MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem8 Structured version   Visualization version   GIF version

Theorem abelthlem8 25021
Description: Lemma for abelth 25023. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem8 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧,𝑀   𝑅,𝑛,𝑤,𝑥,𝑦,𝑧   𝐴,𝑛,𝑤,𝑥,𝑦,𝑧   𝜑,𝑛,𝑤,𝑥,𝑦   𝑤,𝐹,𝑦   𝑆,𝑛,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem8
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12274 . . 3 0 = (ℤ‘0)
2 0zd 11987 . . 3 ((𝜑𝑅 ∈ ℝ+) → 0 ∈ ℤ)
3 id 22 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ+)
4 abelth.3 . . . . 5 (𝜑𝑀 ∈ ℝ)
5 abelth.4 . . . . 5 (𝜑 → 0 ≤ 𝑀)
64, 5ge0p1rpd 12455 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ+)
7 rpdivcl 12408 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑀 + 1) ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
83, 6, 7syl2anr 598 . . 3 ((𝜑𝑅 ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
9 eqidd 2822 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑘))
10 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
1110adantr 483 . . 3 ((𝜑𝑅 ∈ ℝ+) → seq0( + , 𝐴) ⇝ 0)
121, 2, 8, 9, 11climi0 14863 . 2 ((𝜑𝑅 ∈ ℝ+) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
138adantr 483 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
14 fzfid 13335 . . . . . . 7 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
15 0zd 11987 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
16 abelth.1 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
1716ffvelrnda 6845 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ0) → (𝐴𝑤) ∈ ℂ)
181, 15, 17serf 13392 . . . . . . . . 9 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
19 elfznn0 12994 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 − 1)) → 𝑖 ∈ ℕ0)
20 ffvelrn 6843 . . . . . . . . 9 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2118, 19, 20syl2an 597 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2221abscld 14790 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2314, 22fsumrecl 15085 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2423ad2antrr 724 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2521absge0d 14798 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 ≤ (abs‘(seq0( + , 𝐴)‘𝑖)))
2614, 22, 25fsumge0 15144 . . . . . 6 (𝜑 → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2726ad2antrr 724 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2824, 27ge0p1rpd 12455 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) ∈ ℝ+)
2913, 28rpdivcld 12442 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+)
30 abelth.2 . . . . . . . . . . . . . . . . 17 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
31 abelth.5 . . . . . . . . . . . . . . . . 17 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
3216, 30, 4, 5, 31abelthlem2 25014 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
3332simpld 497 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ 𝑆)
34 oveq1 7157 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥𝑛) = (1↑𝑛))
35 nn0z 11999 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
36 1exp 13452 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3834, 37sylan9eq 2876 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) = 1)
3938oveq2d 7166 . . . . . . . . . . . . . . . . 17 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · 1))
4039sumeq2dv 15054 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
41 abelth.6 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
42 sumex 15038 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) ∈ V
4340, 41, 42fvmpt 6762 . . . . . . . . . . . . . . 15 (1 ∈ 𝑆 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4433, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4516ffvelrnda 6845 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
4645mulid1d 10652 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
4746eqcomd 2827 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((𝐴𝑛) · 1))
4846, 45eqeltrd 2913 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) ∈ ℂ)
491, 15, 47, 48, 10isumclim 15106 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) = 0)
5044, 49eqtrd 2856 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘1) = 0)
5150adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝐹‘1) = 0)
5251oveq1d 7165 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = (0 − (𝐹𝑦)))
53 df-neg 10867 . . . . . . . . . . 11 -(𝐹𝑦) = (0 − (𝐹𝑦))
5452, 53syl6eqr 2874 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = -(𝐹𝑦))
5554fveq2d 6668 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘-(𝐹𝑦)))
5616, 30, 4, 5, 31, 41abelthlem4 25016 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
5756ffvelrnda 6845 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
5857absnegd 14803 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘-(𝐹𝑦)) = (abs‘(𝐹𝑦)))
5955, 58eqtrd 2856 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6059adantlr 713 . . . . . . 7 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6160ad2ant2r 745 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
62 fveq2 6664 . . . . . . . . . . 11 (𝑦 = 1 → (𝐹𝑦) = (𝐹‘1))
6362, 50sylan9eqr 2878 . . . . . . . . . 10 ((𝜑𝑦 = 1) → (𝐹𝑦) = 0)
6463abs00bd 14645 . . . . . . . . 9 ((𝜑𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
6564ad5ant15 757 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
66 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 𝑅 ∈ ℝ+)
6766rpgt0d 12428 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 0 < 𝑅)
6867adantr 483 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → 0 < 𝑅)
6965, 68eqbrtrd 5080 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) < 𝑅)
7016ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝐴:ℕ0⟶ℂ)
7130ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ∈ dom ⇝ )
724ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑀 ∈ ℝ)
735ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 0 ≤ 𝑀)
7410ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ⇝ 0)
75 simprll 777 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦𝑆)
76 simprr 771 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ≠ 1)
77 eldifsn 4712 . . . . . . . . . . 11 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
7875, 76, 77sylanbrc 585 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ∈ (𝑆 ∖ {1}))
798ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
80 simplrl 775 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑗 ∈ ℕ0)
81 simplrr 776 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
82 2fveq3 6669 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑚)))
8382breq1d 5068 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ (abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1))))
8483cbvralvw 3449 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
8581, 84sylib 220 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
86 simprlr 778 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))
87 2fveq3 6669 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑖)) = (abs‘(seq0( + , 𝐴)‘𝑛)))
8887cbvsumv 15047 . . . . . . . . . . . . 13 Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) = Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))
8988oveq1i 7160 . . . . . . . . . . . 12 𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) = (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)
9089oveq2i 7161 . . . . . . . . . . 11 ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) = ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
9186, 90breqtrdi 5099 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
9270, 71, 72, 73, 31, 41, 74, 78, 79, 80, 85, 91abelthlem7 25020 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < ((𝑀 + 1) · (𝑅 / (𝑀 + 1))))
93 rpcn 12393 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
9493adantl 484 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
956adantr 483 . . . . . . . . . . . 12 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℝ+)
9695rpcnd 12427 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℂ)
9795rpne0d 12430 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ≠ 0)
9894, 96, 97divcan2d 11412 . . . . . . . . . 10 ((𝜑𝑅 ∈ ℝ+) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
9998ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
10092, 99breqtrd 5084 . . . . . . . 8 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < 𝑅)
101100anassrs 470 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 ≠ 1) → (abs‘(𝐹𝑦)) < 𝑅)
10269, 101pm2.61dane 3104 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘(𝐹𝑦)) < 𝑅)
10361, 102eqbrtrd 5080 . . . . 5 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)
104103expr 459 . . . 4 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ 𝑦𝑆) → ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
105104ralrimiva 3182 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
106 breq2 5062 . . . 4 (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → ((abs‘(1 − 𝑦)) < 𝑤 ↔ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))))
107106rspceaimv 3627 . . 3 ((((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+ ∧ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10829, 105, 107syl2anc 586 . 2 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10912, 108rexlimddv 3291 1 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  cdif 3932  wss 3935  {csn 4560   class class class wbr 5058  cmpt 5138  dom cdm 5549  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  0cn0 11891  cz 11975  cuz 12237  +crp 12383  ...cfz 12886  seqcseq 13363  cexp 13423  abscabs 14587  cli 14835  Σcsu 15036  ballcbl 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-xadd 12502  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534
This theorem is referenced by:  abelthlem9  25022
  Copyright terms: Public domain W3C validator