MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem8 Structured version   Visualization version   GIF version

Theorem abelthlem8 24238
Description: Lemma for abelth 24240. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem8 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧,𝑀   𝑅,𝑛,𝑤,𝑥,𝑦,𝑧   𝐴,𝑛,𝑤,𝑥,𝑦,𝑧   𝜑,𝑛,𝑤,𝑥,𝑦   𝑤,𝐹,𝑦   𝑆,𝑛,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem8
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11760 . . 3 0 = (ℤ‘0)
2 0zd 11427 . . 3 ((𝜑𝑅 ∈ ℝ+) → 0 ∈ ℤ)
3 id 22 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ+)
4 abelth.3 . . . . 5 (𝜑𝑀 ∈ ℝ)
5 abelth.4 . . . . 5 (𝜑 → 0 ≤ 𝑀)
64, 5ge0p1rpd 11940 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ+)
7 rpdivcl 11894 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑀 + 1) ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
83, 6, 7syl2anr 494 . . 3 ((𝜑𝑅 ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
9 eqidd 2652 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑘))
10 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
1110adantr 480 . . 3 ((𝜑𝑅 ∈ ℝ+) → seq0( + , 𝐴) ⇝ 0)
121, 2, 8, 9, 11climi0 14287 . 2 ((𝜑𝑅 ∈ ℝ+) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
138adantr 480 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
14 fzfid 12812 . . . . . . 7 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
15 0zd 11427 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
16 abelth.1 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
1716ffvelrnda 6399 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ0) → (𝐴𝑤) ∈ ℂ)
181, 15, 17serf 12869 . . . . . . . . 9 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
19 elfznn0 12471 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 − 1)) → 𝑖 ∈ ℕ0)
20 ffvelrn 6397 . . . . . . . . 9 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2118, 19, 20syl2an 493 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2221abscld 14219 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2314, 22fsumrecl 14509 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2423ad2antrr 762 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2521absge0d 14227 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 ≤ (abs‘(seq0( + , 𝐴)‘𝑖)))
2614, 22, 25fsumge0 14571 . . . . . 6 (𝜑 → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2726ad2antrr 762 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2824, 27ge0p1rpd 11940 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) ∈ ℝ+)
2913, 28rpdivcld 11927 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+)
30 abelth.2 . . . . . . . . . . . . . . . . 17 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
31 abelth.5 . . . . . . . . . . . . . . . . 17 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
3216, 30, 4, 5, 31abelthlem2 24231 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
3332simpld 474 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ 𝑆)
34 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥𝑛) = (1↑𝑛))
35 nn0z 11438 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
36 1exp 12929 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3834, 37sylan9eq 2705 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) = 1)
3938oveq2d 6706 . . . . . . . . . . . . . . . . 17 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · 1))
4039sumeq2dv 14477 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
41 abelth.6 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
42 sumex 14462 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) ∈ V
4340, 41, 42fvmpt 6321 . . . . . . . . . . . . . . 15 (1 ∈ 𝑆 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4433, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4516ffvelrnda 6399 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
4645mulid1d 10095 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
4746eqcomd 2657 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((𝐴𝑛) · 1))
4846, 45eqeltrd 2730 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) ∈ ℂ)
491, 15, 47, 48, 10isumclim 14532 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) = 0)
5044, 49eqtrd 2685 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘1) = 0)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝐹‘1) = 0)
5251oveq1d 6705 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = (0 − (𝐹𝑦)))
53 df-neg 10307 . . . . . . . . . . 11 -(𝐹𝑦) = (0 − (𝐹𝑦))
5452, 53syl6eqr 2703 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = -(𝐹𝑦))
5554fveq2d 6233 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘-(𝐹𝑦)))
5616, 30, 4, 5, 31, 41abelthlem4 24233 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
5756ffvelrnda 6399 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
5857absnegd 14232 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘-(𝐹𝑦)) = (abs‘(𝐹𝑦)))
5955, 58eqtrd 2685 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6059adantlr 751 . . . . . . 7 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6160ad2ant2r 798 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
62 simplll 813 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 𝜑)
63 fveq2 6229 . . . . . . . . . . 11 (𝑦 = 1 → (𝐹𝑦) = (𝐹‘1))
6463, 50sylan9eqr 2707 . . . . . . . . . 10 ((𝜑𝑦 = 1) → (𝐹𝑦) = 0)
6564abs00bd 14075 . . . . . . . . 9 ((𝜑𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
6662, 65sylan 487 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
67 simpllr 815 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 𝑅 ∈ ℝ+)
6867rpgt0d 11913 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 0 < 𝑅)
6968adantr 480 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → 0 < 𝑅)
7066, 69eqbrtrd 4707 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) < 𝑅)
7116ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝐴:ℕ0⟶ℂ)
7230ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ∈ dom ⇝ )
734ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑀 ∈ ℝ)
745ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 0 ≤ 𝑀)
7510ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ⇝ 0)
76 simprll 819 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦𝑆)
77 simprr 811 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ≠ 1)
78 eldifsn 4350 . . . . . . . . . . 11 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
7976, 77, 78sylanbrc 699 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ∈ (𝑆 ∖ {1}))
808ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
81 simplrl 817 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑗 ∈ ℕ0)
82 simplrr 818 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
83 fveq2 6229 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑚))
8483fveq2d 6233 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑚)))
8584breq1d 4695 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ (abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1))))
8685cbvralv 3201 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
8782, 86sylib 208 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
88 simprlr 820 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))
89 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (seq0( + , 𝐴)‘𝑖) = (seq0( + , 𝐴)‘𝑛))
9089fveq2d 6233 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑖)) = (abs‘(seq0( + , 𝐴)‘𝑛)))
9190cbvsumv 14470 . . . . . . . . . . . . 13 Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) = Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))
9291oveq1i 6700 . . . . . . . . . . . 12 𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) = (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)
9392oveq2i 6701 . . . . . . . . . . 11 ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) = ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
9488, 93syl6breq 4726 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
9571, 72, 73, 74, 31, 41, 75, 79, 80, 81, 87, 94abelthlem7 24237 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < ((𝑀 + 1) · (𝑅 / (𝑀 + 1))))
96 rpcn 11879 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
9796adantl 481 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
986adantr 480 . . . . . . . . . . . 12 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℝ+)
9998rpcnd 11912 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℂ)
10098rpne0d 11915 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ≠ 0)
10197, 99, 100divcan2d 10841 . . . . . . . . . 10 ((𝜑𝑅 ∈ ℝ+) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
102101ad2antrr 762 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
10395, 102breqtrd 4711 . . . . . . . 8 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < 𝑅)
104103anassrs 681 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 ≠ 1) → (abs‘(𝐹𝑦)) < 𝑅)
10570, 104pm2.61dane 2910 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘(𝐹𝑦)) < 𝑅)
10661, 105eqbrtrd 4707 . . . . 5 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)
107106expr 642 . . . 4 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ 𝑦𝑆) → ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
108107ralrimiva 2995 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
109 breq2 4689 . . . . . 6 (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → ((abs‘(1 − 𝑦)) < 𝑤 ↔ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))))
110109imbi1d 330 . . . . 5 (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅) ↔ ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)))
111110ralbidv 3015 . . . 4 (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (∀𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅) ↔ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)))
112111rspcev 3340 . . 3 ((((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+ ∧ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
11329, 108, 112syl2anc 694 . 2 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
11412, 113rexlimddv 3064 1 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  cdif 3604  wss 3607  {csn 4210   class class class wbr 4685  cmpt 4762  dom cdm 5143  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  0cn0 11330  cz 11415  cuz 11725  +crp 11870  ...cfz 12364  seqcseq 12841  cexp 12900  abscabs 14018  cli 14259  Σcsu 14460  ballcbl 19781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-xadd 11985  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789
This theorem is referenced by:  abelthlem9  24239
  Copyright terms: Public domain W3C validator