MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abexssex Structured version   Visualization version   GIF version

Theorem abexssex 7095
Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.)
Hypotheses
Ref Expression
abrexex2.1 𝐴 ∈ V
abrexex2.2 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abexssex {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abexssex
StepHypRef Expression
1 df-rex 2913 . . . 4 (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴𝜑))
2 selpw 4137 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi1i 730 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝜑) ↔ (𝑥𝐴𝜑))
43exbii 1771 . . . 4 (∃𝑥(𝑥 ∈ 𝒫 𝐴𝜑) ↔ ∃𝑥(𝑥𝐴𝜑))
51, 4bitri 264 . . 3 (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
65abbii 2736 . 2 {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)}
7 abrexex2.1 . . . 4 𝐴 ∈ V
87pwex 4808 . . 3 𝒫 𝐴 ∈ V
9 abrexex2.2 . . 3 {𝑦𝜑} ∈ V
108, 9abrexex2 7094 . 2 {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V
116, 10eqeltrri 2695 1 {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 384  wex 1701  wcel 1987  {cab 2607  wrex 2908  Vcvv 3186  wss 3555  𝒫 cpw 4130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator