MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub Structured version   Visualization version   GIF version

Theorem abladdsub 18937
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
abladdsub ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))

Proof of Theorem abladdsub
StepHypRef Expression
1 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
2 ablsubadd.p . . . . 5 + = (+g𝐺)
31, 2ablcom 18926 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
433adant3r3 1180 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
54oveq1d 7173 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑌 + 𝑋) 𝑍))
6 ablgrp 18913 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
76adantr 483 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
8 simpr2 1191 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
9 simpr1 1190 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr3 1192 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
11 ablsubadd.m . . . 4 = (-g𝐺)
121, 2, 11grpaddsubass 18191 . . 3 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑋𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
137, 8, 9, 10, 12syl13anc 1368 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
14 simpl 485 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Abel)
151, 11grpsubcl 18181 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
167, 9, 10, 15syl3anc 1367 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
171, 2ablcom 18926 . . 3 ((𝐺 ∈ Abel ∧ 𝑌𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
1814, 8, 16, 17syl3anc 1367 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
195, 13, 183eqtrd 2862 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Grpcgrp 18105  -gcsg 18107  Abelcabl 18909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-cmn 18910  df-abl 18911
This theorem is referenced by:  ablpncan2  18938  ablsubsub  18940  ip2subdi  20790
  Copyright terms: Public domain W3C validator