MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac Structured version   Visualization version   GIF version

Theorem ablfac 18687
Description: The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
ablfac (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Distinct variable groups:   𝑠,𝑟,𝐵   𝐶,𝑠   𝜑,𝑠   𝐺,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑟)   𝐶(𝑟)

Proof of Theorem ablfac
Dummy variables 𝑝 𝑥 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . . 4 (𝜑𝐺 ∈ Abel)
2 ablgrp 18398 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 ablfac.b . . . . 5 𝐵 = (Base‘𝐺)
43subgid 17797 . . . 4 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
5 ablfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
6 ablfac.2 . . . . 5 (𝜑𝐵 ∈ Fin)
7 eqid 2760 . . . . 5 (od‘𝐺) = (od‘𝐺)
8 eqid 2760 . . . . 5 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
9 eqid 2760 . . . . 5 (𝑝 ∈ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ↦ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑝 ∈ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ↦ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
10 eqid 2760 . . . . 5 (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
113, 5, 1, 6, 7, 8, 9, 10ablfaclem1 18684 . . . 4 (𝐵 ∈ (SubGrp‘𝐺) → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
121, 2, 4, 114syl 19 . . 3 (𝜑 → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
133, 5, 1, 6, 7, 8, 9, 10ablfaclem3 18686 . . 3 (𝜑 → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) ≠ ∅)
1412, 13eqnetrrd 3000 . 2 (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅)
15 rabn0 4101 . 2 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
1614, 15sylib 208 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  {crab 3054  cin 3714  c0 4058   class class class wbr 4804  cmpt 4881  dom cdm 5266  ran crn 5267  cfv 6049  (class class class)co 6813  Fincfn 8121  cexp 13054  chash 13311  Word cword 13477  cdvds 15182  cprime 15587   pCnt cpc 15743  Basecbs 16059  s cress 16060  Grpcgrp 17623  SubGrpcsubg 17789  odcod 18144   pGrp cpgp 18146  Abelcabl 18394  CycGrpccyg 18479   DProd cdprd 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-rpss 7102  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-word 13485  df-concat 13487  df-s1 13488  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-eqg 17794  df-ghm 17859  df-gim 17902  df-ga 17923  df-cntz 17950  df-oppg 17976  df-od 18148  df-gex 18149  df-pgp 18150  df-lsm 18251  df-pj1 18252  df-cmn 18395  df-abl 18396  df-cyg 18480  df-dprd 18594
This theorem is referenced by:  ablfac2  18688
  Copyright terms: Public domain W3C validator