MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem2 Structured version   Visualization version   GIF version

Theorem ablfaclem2 18406
Description: Lemma for ablfac 18408. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
ablfaclem2.f (𝜑𝐹:𝐴⟶Word 𝐶)
ablfaclem2.q (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
ablfaclem2.l 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
ablfaclem2.g (𝜑𝐻:(0..^(#‘𝐿))–1-1-onto𝐿)
Assertion
Ref Expression
ablfaclem2 (𝜑 → (𝑊𝐵) ≠ ∅)
Distinct variable groups:   𝑠,𝑝,𝑥,𝑦,𝐴   𝐹,𝑠   𝑔,𝑟,𝑠,𝑦,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠   𝑦,𝑤,𝐶,𝑥   𝑊,𝑝,𝑤,𝑥,𝑦   𝐻,𝑠   𝜑,𝑝,𝑠,𝑤,𝑥,𝑦   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐵(𝑦)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝐹(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐻(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐿(𝑥,𝑦,𝑤,𝑔,𝑠,𝑟,𝑝)   𝑂(𝑦,𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 18119 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 ablfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 17517 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
5 ablfac.c . . . 4 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
6 ablfac.2 . . . 4 (𝜑𝐵 ∈ Fin)
7 ablfac.o . . . 4 𝑂 = (od‘𝐺)
8 ablfac.a . . . 4 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)}
9 ablfac.s . . . 4 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))})
10 ablfac.w . . . 4 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
113, 5, 1, 6, 7, 8, 9, 10ablfaclem1 18405 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
121, 2, 4, 114syl 19 . 2 (𝜑 → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
13 ablfaclem2.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶Word 𝐶)
1413ffvelrnda 6315 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ Word 𝐶)
15 wrdf 13249 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ Word 𝐶 → (𝐹𝑦):(0..^(#‘(𝐹𝑦)))⟶𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐹𝑦):(0..^(#‘(𝐹𝑦)))⟶𝐶)
17 fdm 6008 . . . . . . . . . . . . . 14 ((𝐹𝑦):(0..^(#‘(𝐹𝑦)))⟶𝐶 → dom (𝐹𝑦) = (0..^(#‘(𝐹𝑦))))
1816, 17syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → dom (𝐹𝑦) = (0..^(#‘(𝐹𝑦))))
1918feq2d 5988 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → ((𝐹𝑦):dom (𝐹𝑦)⟶𝐶 ↔ (𝐹𝑦):(0..^(#‘(𝐹𝑦)))⟶𝐶))
2016, 19mpbird 247 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶𝐶)
2120ffvelrnda 6315 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
2221anasss 678 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
2322ralrimivva 2965 . . . . . . . 8 (𝜑 → ∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶)
24 eqid 2621 . . . . . . . . 9 (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))
2524fmpt2x 7181 . . . . . . . 8 (∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2623, 25sylib 208 . . . . . . 7 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
27 ablfaclem2.l . . . . . . . 8 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
2827feq2i 5994 . . . . . . 7 ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2926, 28sylibr 224 . . . . . 6 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶)
30 ablfaclem2.g . . . . . . 7 (𝜑𝐻:(0..^(#‘𝐿))–1-1-onto𝐿)
31 f1of 6094 . . . . . . 7 (𝐻:(0..^(#‘𝐿))–1-1-onto𝐿𝐻:(0..^(#‘𝐿))⟶𝐿)
3230, 31syl 17 . . . . . 6 (𝜑𝐻:(0..^(#‘𝐿))⟶𝐿)
33 fco 6015 . . . . . 6 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶𝐻:(0..^(#‘𝐿))⟶𝐿) → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(#‘𝐿))⟶𝐶)
3429, 32, 33syl2anc 692 . . . . 5 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(#‘𝐿))⟶𝐶)
35 iswrdi 13248 . . . . 5 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(#‘𝐿))⟶𝐶 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
3634, 35syl 17 . . . 4 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
37 ablfaclem2.q . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
3837r19.21bi 2927 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
39 ssrab2 3666 . . . . . . . . . . . . . . . . . . . 20 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)} ⊆ ℙ
408, 39eqsstri 3614 . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ ℙ
4140a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℙ)
423, 7, 9, 1, 6, 41ablfac1b 18390 . . . . . . . . . . . . . . . . 17 (𝜑𝐺dom DProd 𝑆)
43 fvex 6158 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝐺) ∈ V
443, 43eqeltri 2694 . . . . . . . . . . . . . . . . . . . 20 𝐵 ∈ V
4544rabex 4773 . . . . . . . . . . . . . . . . . . 19 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ∈ V
4645, 9dmmpti 5980 . . . . . . . . . . . . . . . . . 18 dom 𝑆 = 𝐴
4746a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑆 = 𝐴)
4842, 47dprdf2 18327 . . . . . . . . . . . . . . . 16 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
4948ffvelrnda 6315 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑆𝑦) ∈ (SubGrp‘𝐺))
503, 5, 1, 6, 7, 8, 9, 10ablfaclem1 18405 . . . . . . . . . . . . . . 15 ((𝑆𝑦) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
5149, 50syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
5238, 51eleqtrd 2700 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
53 breq2 4617 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → (𝐺dom DProd 𝑠𝐺dom DProd (𝐹𝑦)))
54 oveq2 6612 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑦) → (𝐺 DProd 𝑠) = (𝐺 DProd (𝐹𝑦)))
5554eqeq1d 2623 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → ((𝐺 DProd 𝑠) = (𝑆𝑦) ↔ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5653, 55anbi12d 746 . . . . . . . . . . . . . . 15 (𝑠 = (𝐹𝑦) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦)) ↔ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5756elrab 3346 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} ↔ ((𝐹𝑦) ∈ Word 𝐶 ∧ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5857simprbi 480 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5952, 58syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
6059simpld 475 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝐹𝑦))
61 dprdf 18326 . . . . . . . . . . 11 (𝐺dom DProd (𝐹𝑦) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
6260, 61syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
6362ffvelrnda 6315 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
6463anasss 678 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
6562feqmptd 6206 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6660, 65breqtrd 4639 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6748feqmptd 6206 . . . . . . . . . 10 (𝜑𝑆 = (𝑦𝐴 ↦ (𝑆𝑦)))
6865oveq2d 6620 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
6959simprd 479 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))
7068, 69eqtr3d 2657 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝑆𝑦))
7170mpteq2dva 4704 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))) = (𝑦𝐴 ↦ (𝑆𝑦)))
7267, 71eqtr4d 2658 . . . . . . . . 9 (𝜑𝑆 = (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7342, 72breqtrd 4639 . . . . . . . 8 (𝜑𝐺dom DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7464, 66, 73dprd2d2 18364 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∧ (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))))
7574simpld 475 . . . . . 6 (𝜑𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
76 fdm 6008 . . . . . . 7 ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶 → dom (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = 𝐿)
7729, 76syl 17 . . . . . 6 (𝜑 → dom (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = 𝐿)
7875, 77, 30dprdf1o 18352 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7978simpld 475 . . . 4 (𝜑𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻))
8078simprd 479 . . . . 5 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
8174simprd 479 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
8272oveq2d 6620 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
83 ssid 3603 . . . . . . . 8 𝐴𝐴
8483a1i 11 . . . . . . 7 (𝜑𝐴𝐴)
853, 7, 9, 1, 6, 41, 8, 84ablfac1c 18391 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
8682, 85eqtr3d 2657 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))) = 𝐵)
8780, 81, 863eqtrd 2659 . . . 4 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)
88 breq2 4617 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺dom DProd 𝑠𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
89 oveq2 6612 . . . . . . 7 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺 DProd 𝑠) = (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
9089eqeq1d 2623 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺 DProd 𝑠) = 𝐵 ↔ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵))
9188, 90anbi12d 746 . . . . 5 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵) ↔ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)))
9291rspcev 3295 . . . 4 ((((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶 ∧ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
9336, 79, 87, 92syl12anc 1321 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
94 rabn0 3932 . . 3 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
9593, 94sylibr 224 . 2 (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅)
9612, 95eqnetrd 2857 1 (𝜑 → (𝑊𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  cin 3554  wss 3555  c0 3891  {csn 4148   ciun 4485   class class class wbr 4613  cmpt 4673   × cxp 5072  dom cdm 5074  ran crn 5075  ccom 5078  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  cmpt2 6606  Fincfn 7899  0cc0 9880  ..^cfzo 12406  cexp 12800  #chash 13057  Word cword 13230  cdvds 14907  cprime 15309   pCnt cpc 15465  Basecbs 15781  s cress 15782  Grpcgrp 17343  SubGrpcsubg 17509  odcod 17865   pGrp cpgp 17867  Abelcabl 18115  CycGrpccyg 18200   DProd cdprd 18313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-word 13238  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-gcd 15141  df-prm 15310  df-pc 15466  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-eqg 17514  df-ghm 17579  df-gim 17622  df-ga 17644  df-cntz 17671  df-oppg 17697  df-od 17869  df-lsm 17972  df-pj1 17973  df-cmn 18116  df-abl 18117  df-dprd 18315
This theorem is referenced by:  ablfaclem3  18407
  Copyright terms: Public domain W3C validator