MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp2 Structured version   Visualization version   GIF version

Theorem ablfacrp2 19192
Description: The factors 𝐾, 𝐿 of ablfacrp 19191 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrp2 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp2
StepHypRef Expression
1 ablfacrp.2 . . . . . . 7 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
2 ablfacrp.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
32nnnn0d 11958 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
4 ablfacrp.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11958 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
63, 5nn0mulcld 11963 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
71, 6eqeltrd 2916 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ0)
8 ablfacrp.b . . . . . . . 8 𝐵 = (Base‘𝐺)
98fvexi 6687 . . . . . . 7 𝐵 ∈ V
10 hashclb 13722 . . . . . . 7 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
119, 10ax-mp 5 . . . . . 6 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
127, 11sylibr 236 . . . . 5 (𝜑𝐵 ∈ Fin)
13 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
1413ssrab3 4060 . . . . 5 𝐾𝐵
15 ssfi 8741 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
1612, 14, 15sylancl 588 . . . 4 (𝜑𝐾 ∈ Fin)
17 hashcl 13720 . . . 4 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
1816, 17syl 17 . . 3 (𝜑 → (♯‘𝐾) ∈ ℕ0)
19 ablfacrp.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
202nnzd 12089 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
21 ablfacrp.o . . . . . . . . 9 𝑂 = (od‘𝐺)
2221, 8oddvdssubg 18978 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2319, 20, 22syl2anc 586 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2413, 23eqeltrid 2920 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
258lagsubg 18345 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝐵))
2624, 12, 25syl2anc 586 . . . . 5 (𝜑 → (♯‘𝐾) ∥ (♯‘𝐵))
272nncnd 11657 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
284nncnd 11657 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2927, 28mulcomd 10665 . . . . . 6 (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀))
301, 29eqtrd 2859 . . . . 5 (𝜑 → (♯‘𝐵) = (𝑁 · 𝑀))
3126, 30breqtrd 5095 . . . 4 (𝜑 → (♯‘𝐾) ∥ (𝑁 · 𝑀))
32 ablfacrp.l . . . . 5 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
33 ablfacrp.1 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
348, 21, 13, 32, 19, 2, 4, 33, 1ablfacrplem 19190 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
3518nn0zd 12088 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℤ)
364nnzd 12089 . . . . 5 (𝜑𝑁 ∈ ℤ)
37 coprmdvds 16000 . . . . 5 (((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3835, 36, 20, 37syl3anc 1367 . . . 4 (𝜑 → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3931, 34, 38mp2and 697 . . 3 (𝜑 → (♯‘𝐾) ∥ 𝑀)
4021, 8oddvdssubg 18978 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4119, 36, 40syl2anc 586 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4232, 41eqeltrid 2920 . . . . . . . . 9 (𝜑𝐿 ∈ (SubGrp‘𝐺))
438lagsubg 18345 . . . . . . . . 9 ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐿) ∥ (♯‘𝐵))
4442, 12, 43syl2anc 586 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∥ (♯‘𝐵))
4544, 1breqtrd 5095 . . . . . . 7 (𝜑 → (♯‘𝐿) ∥ (𝑀 · 𝑁))
46 gcdcom 15865 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
4720, 36, 46syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
4847, 33eqtr3d 2861 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑀) = 1)
498, 21, 32, 13, 19, 4, 2, 48, 30ablfacrplem 19190 . . . . . . 7 (𝜑 → ((♯‘𝐿) gcd 𝑀) = 1)
5032ssrab3 4060 . . . . . . . . . . 11 𝐿𝐵
51 ssfi 8741 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐿𝐵) → 𝐿 ∈ Fin)
5212, 50, 51sylancl 588 . . . . . . . . . 10 (𝜑𝐿 ∈ Fin)
53 hashcl 13720 . . . . . . . . . 10 (𝐿 ∈ Fin → (♯‘𝐿) ∈ ℕ0)
5452, 53syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐿) ∈ ℕ0)
5554nn0zd 12088 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∈ ℤ)
56 coprmdvds 16000 . . . . . . . 8 (((♯‘𝐿) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5755, 20, 36, 56syl3anc 1367 . . . . . . 7 (𝜑 → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5845, 49, 57mp2and 697 . . . . . 6 (𝜑 → (♯‘𝐿) ∥ 𝑁)
59 dvdscmul 15639 . . . . . . 7 (((♯‘𝐿) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
6055, 36, 20, 59syl3anc 1367 . . . . . 6 (𝜑 → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
6158, 60mpd 15 . . . . 5 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))
62 eqid 2824 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
63 eqid 2824 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
648, 21, 13, 32, 19, 2, 4, 33, 1, 62, 63ablfacrp 19191 . . . . . . . . 9 (𝜑 → ((𝐾𝐿) = {(0g𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵))
6564simprd 498 . . . . . . . 8 (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵)
6665fveq2d 6677 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = (♯‘𝐵))
67 eqid 2824 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
6864simpld 497 . . . . . . . 8 (𝜑 → (𝐾𝐿) = {(0g𝐺)})
6967, 19, 24, 42ablcntzd 18980 . . . . . . . 8 (𝜑𝐾 ⊆ ((Cntz‘𝐺)‘𝐿))
7063, 62, 67, 24, 42, 68, 69, 16, 52lsmhash 18834 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = ((♯‘𝐾) · (♯‘𝐿)))
7166, 70eqtr3d 2861 . . . . . 6 (𝜑 → (♯‘𝐵) = ((♯‘𝐾) · (♯‘𝐿)))
7271, 1eqtr3d 2861 . . . . 5 (𝜑 → ((♯‘𝐾) · (♯‘𝐿)) = (𝑀 · 𝑁))
7361, 72breqtrrd 5097 . . . 4 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)))
7462subg0cl 18290 . . . . . . . 8 (𝐿 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐿)
75 ne0i 4303 . . . . . . . 8 ((0g𝐺) ∈ 𝐿𝐿 ≠ ∅)
7642, 74, 753syl 18 . . . . . . 7 (𝜑𝐿 ≠ ∅)
77 hashnncl 13730 . . . . . . . 8 (𝐿 ∈ Fin → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7852, 77syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7976, 78mpbird 259 . . . . . 6 (𝜑 → (♯‘𝐿) ∈ ℕ)
8079nnne0d 11690 . . . . 5 (𝜑 → (♯‘𝐿) ≠ 0)
81 dvdsmulcr 15642 . . . . 5 ((𝑀 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ ((♯‘𝐿) ∈ ℤ ∧ (♯‘𝐿) ≠ 0)) → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8220, 35, 55, 80, 81syl112anc 1370 . . . 4 (𝜑 → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8373, 82mpbid 234 . . 3 (𝜑𝑀 ∥ (♯‘𝐾))
84 dvdseq 15667 . . 3 ((((♯‘𝐾) ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((♯‘𝐾) ∥ 𝑀𝑀 ∥ (♯‘𝐾))) → (♯‘𝐾) = 𝑀)
8518, 3, 39, 83, 84syl22anc 836 . 2 (𝜑 → (♯‘𝐾) = 𝑀)
86 dvdsmulc 15640 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8735, 20, 36, 86syl3anc 1367 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8839, 87mpd 15 . . . . 5 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))
8988, 72breqtrrd 5097 . . . 4 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)))
9085, 2eqeltrd 2916 . . . . . 6 (𝜑 → (♯‘𝐾) ∈ ℕ)
9190nnne0d 11690 . . . . 5 (𝜑 → (♯‘𝐾) ≠ 0)
92 dvdscmulr 15641 . . . . 5 ((𝑁 ∈ ℤ ∧ (♯‘𝐿) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9336, 55, 35, 91, 92syl112anc 1370 . . . 4 (𝜑 → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9489, 93mpbid 234 . . 3 (𝜑𝑁 ∥ (♯‘𝐿))
95 dvdseq 15667 . . 3 ((((♯‘𝐿) ∈ ℕ0𝑁 ∈ ℕ0) ∧ ((♯‘𝐿) ∥ 𝑁𝑁 ∥ (♯‘𝐿))) → (♯‘𝐿) = 𝑁)
9654, 5, 58, 94, 95syl22anc 836 . 2 (𝜑 → (♯‘𝐿) = 𝑁)
9785, 96jca 514 1 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  {crab 3145  Vcvv 3497  cin 3938  wss 3939  c0 4294  {csn 4570   class class class wbr 5069  cfv 6358  (class class class)co 7159  Fincfn 8512  0cc0 10540  1c1 10541   · cmul 10545  cn 11641  0cn0 11900  cz 11984  chash 13693  cdvds 15610   gcd cgcd 15846  Basecbs 16486  0gc0g 16716  SubGrpcsubg 18276  Cntzccntz 18448  odcod 18655  LSSumclsm 18762  Abelcabl 18910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-eqg 18281  df-ga 18423  df-cntz 18450  df-od 18659  df-lsm 18764  df-pj1 18765  df-cmn 18911  df-abl 18912
This theorem is referenced by:  ablfac1a  19194
  Copyright terms: Public domain W3C validator