MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrplem Structured version   Visualization version   GIF version

Theorem ablfacrplem 19190
Description: Lemma for ablfacrp2 19192. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrplem (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrplem
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nprmdvds1 16053 . . . . . . 7 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
21adantl 484 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
3 ablfacrp.1 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
43adantr 483 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑀 gcd 𝑁) = 1)
54breq2d 5081 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (𝑀 gcd 𝑁) ↔ 𝑝 ∥ 1))
62, 5mtbird 327 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ (𝑀 gcd 𝑁))
7 ablfacrp.k . . . . . . . . . . . . . 14 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
8 ablfacrp.g . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Abel)
9 ablfacrp.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
109nnzd 12089 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
11 ablfacrp.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
12 ablfacrp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
1311, 12oddvdssubg 18978 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
148, 10, 13syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
157, 14eqeltrid 2920 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1615ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ (SubGrp‘𝐺))
17 eqid 2824 . . . . . . . . . . . . 13 (𝐺s 𝐾) = (𝐺s 𝐾)
1817subggrp 18285 . . . . . . . . . . . 12 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺s 𝐾) ∈ Grp)
1916, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (𝐺s 𝐾) ∈ Grp)
2017subgbas 18286 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
2116, 20syl 17 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 = (Base‘(𝐺s 𝐾)))
22 ablfacrp.2 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
239nnnn0d 11958 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
24 ablfacrp.n . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
2524nnnn0d 11958 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2623, 25nn0mulcld 11963 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
2722, 26eqeltrd 2916 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐵) ∈ ℕ0)
2812fvexi 6687 . . . . . . . . . . . . . . . 16 𝐵 ∈ V
29 hashclb 13722 . . . . . . . . . . . . . . . 16 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
3127, 30sylibr 236 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ Fin)
327ssrab3 4060 . . . . . . . . . . . . . 14 𝐾𝐵
33 ssfi 8741 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
3431, 32, 33sylancl 588 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Fin)
3534ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ Fin)
3621, 35eqeltrrd 2917 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (Base‘(𝐺s 𝐾)) ∈ Fin)
37 simplr 767 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∈ ℙ)
38 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘𝐾))
3921fveq2d 6677 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (♯‘𝐾) = (♯‘(Base‘(𝐺s 𝐾))))
4038, 39breqtrd 5095 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾))))
41 eqid 2824 . . . . . . . . . . . 12 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
42 eqid 2824 . . . . . . . . . . . 12 (od‘(𝐺s 𝐾)) = (od‘(𝐺s 𝐾))
4341, 42odcau 18732 . . . . . . . . . . 11 ((((𝐺s 𝐾) ∈ Grp ∧ (Base‘(𝐺s 𝐾)) ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾)))) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4419, 36, 37, 40, 43syl31anc 1369 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4521rexeqdv 3419 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝 ↔ ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝))
4644, 45mpbird 259 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4717, 11, 42subgod 18698 . . . . . . . . . . . . 13 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
4816, 47sylan 582 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
49 fveq2 6673 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑔 → (𝑂𝑥) = (𝑂𝑔))
5049breq1d 5079 . . . . . . . . . . . . . . 15 (𝑥 = 𝑔 → ((𝑂𝑥) ∥ 𝑀 ↔ (𝑂𝑔) ∥ 𝑀))
5150, 7elrab2 3686 . . . . . . . . . . . . . 14 (𝑔𝐾 ↔ (𝑔𝐵 ∧ (𝑂𝑔) ∥ 𝑀))
5251simprbi 499 . . . . . . . . . . . . 13 (𝑔𝐾 → (𝑂𝑔) ∥ 𝑀)
5352adantl 484 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) ∥ 𝑀)
5448, 53eqbrtrrd 5093 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → ((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀)
55 breq1 5072 . . . . . . . . . . 11 (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝 → (((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀𝑝𝑀))
5654, 55syl5ibcom 247 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5756rexlimdva 3287 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5846, 57mpd 15 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝𝑀)
5958ex 415 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (♯‘𝐾) → 𝑝𝑀))
6059anim1d 612 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) → (𝑝𝑀𝑝𝑁)))
61 prmz 16022 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6261adantl 484 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
63 hashcl 13720 . . . . . . . . . 10 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
6434, 63syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐾) ∈ ℕ0)
6564nn0zd 12088 . . . . . . . 8 (𝜑 → (♯‘𝐾) ∈ ℤ)
6665adantr 483 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (♯‘𝐾) ∈ ℤ)
6724nnzd 12089 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
6867adantr 483 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
69 dvdsgcdb 15896 . . . . . . 7 ((𝑝 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
7062, 66, 68, 69syl3anc 1367 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
7110adantr 483 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℤ)
72 dvdsgcdb 15896 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7362, 71, 68, 72syl3anc 1367 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7460, 70, 733imtr3d 295 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((♯‘𝐾) gcd 𝑁) → 𝑝 ∥ (𝑀 gcd 𝑁)))
756, 74mtod 200 . . . 4 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7675nrexdv 3273 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
77 exprmfct 16051 . . 3 (((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7876, 77nsyl 142 . 2 (𝜑 → ¬ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2))
7924nnne0d 11690 . . . . . 6 (𝜑𝑁 ≠ 0)
80 simpr 487 . . . . . . 7 (((♯‘𝐾) = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
8180necon3ai 3044 . . . . . 6 (𝑁 ≠ 0 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
8279, 81syl 17 . . . . 5 (𝜑 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
83 gcdn0cl 15854 . . . . 5 ((((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0)) → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
8465, 67, 82, 83syl21anc 835 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
85 elnn1uz2 12328 . . . 4 (((♯‘𝐾) gcd 𝑁) ∈ ℕ ↔ (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8684, 85sylib 220 . . 3 (𝜑 → (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8786ord 860 . 2 (𝜑 → (¬ ((♯‘𝐾) gcd 𝑁) = 1 → ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8878, 87mt3d 150 1 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3019  wrex 3142  {crab 3145  Vcvv 3497  wss 3939   class class class wbr 5069  cfv 6358  (class class class)co 7159  Fincfn 8512  0cc0 10540  1c1 10541   · cmul 10545  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  chash 13693  cdvds 15610   gcd cgcd 15846  cprime 16018  Basecbs 16486  s cress 16487  Grpcgrp 18106  SubGrpcsubg 18276  odcod 18655  Abelcabl 18910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-eqg 18281  df-ga 18423  df-od 18659  df-cmn 18911  df-abl 18912
This theorem is referenced by:  ablfacrp2  19192
  Copyright terms: Public domain W3C validator