Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abliso Structured version   Visualization version   GIF version

Theorem abliso 30678
Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.)
Assertion
Ref Expression
abliso ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)

Proof of Theorem abliso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gimghm 18398 . . . 4 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 ghmgrp2 18355 . . . 4 (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp)
31, 2syl 17 . . 3 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝑁 ∈ Grp)
43adantl 484 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Grp)
5 grpmnd 18104 . . . 4 (𝑁 ∈ Grp → 𝑁 ∈ Mnd)
64, 5syl 17 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Mnd)
7 simpll 765 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑀 ∈ Abel)
8 eqid 2821 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
9 eqid 2821 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
108, 9gimf1o 18397 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
11 f1ocnv 6621 . . . . . . . . . . 11 (𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) → 𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀))
12 f1of 6609 . . . . . . . . . . 11 (𝐹:(Base‘𝑁)–1-1-onto→(Base‘𝑀) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
1310, 11, 123syl 18 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
1413ad2antlr 725 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑁)⟶(Base‘𝑀))
15 simprl 769 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑥 ∈ (Base‘𝑁))
1614, 15ffvelrnd 6846 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑥) ∈ (Base‘𝑀))
17 simprr 771 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑦 ∈ (Base‘𝑁))
1814, 17ffvelrnd 6846 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹𝑦) ∈ (Base‘𝑀))
19 eqid 2821 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
208, 19ablcom 18918 . . . . . . . 8 ((𝑀 ∈ Abel ∧ (𝐹𝑥) ∈ (Base‘𝑀) ∧ (𝐹𝑦) ∈ (Base‘𝑀)) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
217, 16, 18, 20syl3anc 1367 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → ((𝐹𝑥)(+g𝑀)(𝐹𝑦)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
22 gimcnv 18401 . . . . . . . . . 10 (𝐹 ∈ (𝑀 GrpIso 𝑁) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
2322ad2antlr 725 . . . . . . . . 9 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpIso 𝑀))
24 gimghm 18398 . . . . . . . . 9 (𝐹 ∈ (𝑁 GrpIso 𝑀) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
2523, 24syl 17 . . . . . . . 8 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹 ∈ (𝑁 GrpHom 𝑀))
26 eqid 2821 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
279, 26, 19ghmlin 18357 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
2825, 15, 17, 27syl3anc 1367 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = ((𝐹𝑥)(+g𝑀)(𝐹𝑦)))
299, 26, 19ghmlin 18357 . . . . . . . 8 ((𝐹 ∈ (𝑁 GrpHom 𝑀) ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
3025, 17, 15, 29syl3anc 1367 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑦(+g𝑁)𝑥)) = ((𝐹𝑦)(+g𝑀)(𝐹𝑥)))
3121, 28, 303eqtr4d 2866 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝑥(+g𝑁)𝑦)) = (𝐹‘(𝑦(+g𝑁)𝑥)))
3231fveq2d 6668 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))))
3310ad2antlr 725 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁))
343ad2antlr 725 . . . . . . 7 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → 𝑁 ∈ Grp)
359, 26grpcl 18105 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
3634, 15, 17, 35syl3anc 1367 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁))
37 f1ocnvfv2 7028 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑥(+g𝑁)𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
3833, 36, 37syl2anc 586 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑥(+g𝑁)𝑦))) = (𝑥(+g𝑁)𝑦))
399, 26grpcl 18105 . . . . . . 7 ((𝑁 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑁) ∧ 𝑥 ∈ (Base‘𝑁)) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
4034, 17, 15, 39syl3anc 1367 . . . . . 6 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁))
41 f1ocnvfv2 7028 . . . . . 6 ((𝐹:(Base‘𝑀)–1-1-onto→(Base‘𝑁) ∧ (𝑦(+g𝑁)𝑥) ∈ (Base‘𝑁)) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4233, 40, 41syl2anc 586 . . . . 5 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝐹‘(𝐹‘(𝑦(+g𝑁)𝑥))) = (𝑦(+g𝑁)𝑥))
4332, 38, 423eqtr3d 2864 . . . 4 (((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
4443ralrimivva 3191 . . 3 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥))
459, 26iscmn 18908 . . 3 (𝑁 ∈ CMnd ↔ (𝑁 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑁)∀𝑦 ∈ (Base‘𝑁)(𝑥(+g𝑁)𝑦) = (𝑦(+g𝑁)𝑥)))
466, 44, 45sylanbrc 585 . 2 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ CMnd)
47 isabl 18904 . 2 (𝑁 ∈ Abel ↔ (𝑁 ∈ Grp ∧ 𝑁 ∈ CMnd))
484, 46, 47sylanbrc 585 1 ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  ccnv 5548  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Mndcmnd 17905  Grpcgrp 18097   GrpHom cghm 18349   GrpIso cgim 18391  CMndccmn 18900  Abelcabl 18901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-ghm 18350  df-gim 18393  df-cmn 18902  df-abl 18903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator