Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnsg Structured version   Visualization version   GIF version

Theorem ablnsg 18171
 Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
ablnsg (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))

Proof of Theorem ablnsg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2621 . . . . . . 7 (+g𝐺) = (+g𝐺)
31, 2ablcom 18131 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
433expb 1263 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
54eleq1d 2683 . . . 4 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
65ralrimivva 2965 . . 3 (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
71, 2isnsg 17544 . . . 4 (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥)))
87rbaib 946 . . 3 (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
96, 8syl 17 . 2 (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
109eqrdv 2619 1 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  SubGrpcsubg 17509  NrmSGrpcnsg 17510  Abelcabl 18115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-subg 17512  df-nsg 17513  df-cmn 18116  df-abl 18117 This theorem is referenced by:  qusabl  18189  qus1  19154  qusrhm  19156
 Copyright terms: Public domain W3C validator