Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Structured version   Visualization version   GIF version

Theorem ablo4pnp 35160
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1 𝑋 = ran 𝐺
abl4pnp.2 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablo4pnp ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 1085 . . . . 5 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 abl4pnp.1 . . . . . 6 𝑋 = ran 𝐺
3 abl4pnp.2 . . . . . 6 𝐷 = ( /𝑔𝐺)
42, 3ablomuldiv 28331 . . . . 5 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
51, 4sylan2br 596 . . . 4 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
65adantrrr 723 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
76oveq1d 7173 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹))
8 ablogrpo 28326 . . . . . . 7 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
92grpocl 28279 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
1093expib 1118 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
118, 10syl 17 . . . . . 6 (𝐺 ∈ AbelOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
1211anim1d 612 . . . . 5 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋))))
13 3anass 1091 . . . . 5 (((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋) ↔ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋)))
1412, 13syl6ibr 254 . . . 4 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)))
1514imp 409 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋))
162, 3ablodivdiv4 28333 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
1715, 16syldan 593 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
182, 3grpodivcl 28318 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
19183expib 1118 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋))
2019anim1d 612 . . . . . 6 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋))))
21 an4 654 . . . . . 6 (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) ↔ ((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)))
22 3anass 1091 . . . . . 6 (((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋) ↔ ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋)))
2320, 21, 223imtr4g 298 . . . . 5 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)))
2423imp 409 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋))
252, 3grpomuldivass 28320 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
2624, 25syldan 593 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
278, 26sylan 582 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
287, 17, 273eqtr3d 2866 1 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  ran crn 5558  cfv 6357  (class class class)co 7158  GrpOpcgr 28268   /𝑔 cgs 28271  AbelOpcablo 28323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator