![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablsubsub4 | Structured version Visualization version GIF version |
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsubsub4 | ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablgrp 18398 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | ablsubsub.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | ablsubsub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ablsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ablsubadd.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | grpsubcl 17696 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
9 | 3, 4, 5, 8 | syl3anc 1477 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝐵) |
10 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | eqid 2760 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 6, 11, 12, 7 | grpsubval 17666 | . . 3 ⊢ (((𝑋 − 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
14 | 9, 10, 13 | syl2anc 696 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
15 | 6, 12 | grpinvcl 17668 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
16 | 3, 10, 15 | syl2anc 696 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
17 | 6, 11, 7, 1, 4, 5, 16 | ablsubsub 18423 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
18 | 6, 11, 7, 12, 3, 5, 10 | grpsubinv 17689 | . . 3 ⊢ (𝜑 → (𝑌 − ((invg‘𝐺)‘𝑍)) = (𝑌 + 𝑍)) |
19 | 18 | oveq2d 6829 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = (𝑋 − (𝑌 + 𝑍))) |
20 | 14, 17, 19 | 3eqtr2d 2800 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 Grpcgrp 17623 invgcminusg 17624 -gcsg 17625 Abelcabl 18394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-sbg 17628 df-cmn 18395 df-abl 18396 |
This theorem is referenced by: ablsub32 18427 ablnnncan 18428 ip2subdi 20191 cpmadugsumlemF 20883 baerlem5alem2 37502 |
Copyright terms: Public domain | W3C validator |