Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexdom Structured version   Visualization version   GIF version

Theorem abrexdom 33143
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
abrexdom.1 (𝑦𝐴 → ∃*𝑥𝜑)
Assertion
Ref Expression
abrexdom (𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝜑} ≼ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem abrexdom
StepHypRef Expression
1 df-rex 2918 . . . 4 (∃𝑦𝐴 𝜑 ↔ ∃𝑦(𝑦𝐴𝜑))
21abbii 2742 . . 3 {𝑥 ∣ ∃𝑦𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦𝐴𝜑)}
3 rnopab 5334 . . 3 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑦𝐴𝜑)}
42, 3eqtr4i 2651 . 2 {𝑥 ∣ ∃𝑦𝐴 𝜑} = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}
5 dmopabss 5301 . . . . 5 dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
6 ssexg 4769 . . . . 5 ((dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴𝐴𝑉) → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V)
75, 6mpan 705 . . . 4 (𝐴𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V)
8 funopab 5883 . . . . . . 7 (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ↔ ∀𝑦∃*𝑥(𝑦𝐴𝜑))
9 abrexdom.1 . . . . . . . 8 (𝑦𝐴 → ∃*𝑥𝜑)
10 moanimv 2535 . . . . . . . 8 (∃*𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 → ∃*𝑥𝜑))
119, 10mpbir 221 . . . . . . 7 ∃*𝑥(𝑦𝐴𝜑)
128, 11mpgbir 1723 . . . . . 6 Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}
1312a1i 11 . . . . 5 (𝐴𝑉 → Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
14 funfn 5879 . . . . 5 (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ↔ {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
1513, 14sylib 208 . . . 4 (𝐴𝑉 → {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
16 fnrndomg 9303 . . . 4 (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V → ({⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}))
177, 15, 16sylc 65 . . 3 (𝐴𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
18 ssdomg 7946 . . . 4 (𝐴𝑉 → (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴))
195, 18mpi 20 . . 3 (𝐴𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
20 domtr 7954 . . 3 ((ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∧ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴) → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
2117, 19, 20syl2anc 692 . 2 (𝐴𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
224, 21syl5eqbr 4653 1 (𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝜑} ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1701  wcel 1992  ∃*wmo 2475  {cab 2612  wrex 2913  Vcvv 3191  wss 3560   class class class wbr 4618  {copab 4677  dom cdm 5079  ran crn 5080  Fun wfun 5844   Fn wfn 5845  cdom 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-ac2 9230
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-card 8710  df-acn 8713  df-ac 8884
This theorem is referenced by:  abrexdom2  33144
  Copyright terms: Public domain W3C validator