Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexss Structured version   Visualization version   GIF version

Theorem abrexss 29476
Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.)
Hypothesis
Ref Expression
abrexss.1 𝑥𝐶
Assertion
Ref Expression
abrexss (∀𝑥𝐴 𝐵𝐶 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem abrexss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfra1 2970 . . . 4 𝑥𝑥𝐴 𝐵𝐶
2 abrexss.1 . . . . 5 𝑥𝐶
32nfcri 2787 . . . 4 𝑥 𝑧𝐶
4 eleq1 2718 . . . 4 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
5 vex 3234 . . . . 5 𝑧 ∈ V
65a1i 11 . . . 4 (∀𝑥𝐴 𝐵𝐶𝑧 ∈ V)
7 rspa 2959 . . . 4 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
81, 3, 4, 6, 7elabreximd 29474 . . 3 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) → 𝑧𝐶)
98ex 449 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑧𝐶))
109ssrdv 3642 1 (∀𝑥𝐴 𝐵𝐶 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  {cab 2637  wnfc 2780  wral 2941  wrex 2942  Vcvv 3231  wss 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-in 3614  df-ss 3621
This theorem is referenced by:  funimass4f  29565  measvunilem  30403
  Copyright terms: Public domain W3C validator