Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexss Structured version   Visualization version   GIF version

Theorem abrexss 28540
Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.)
Hypothesis
Ref Expression
abrexss.1 𝑥𝐶
Assertion
Ref Expression
abrexss (∀𝑥𝐴 𝐵𝐶 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem abrexss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfra1 2924 . . . 4 𝑥𝑥𝐴 𝐵𝐶
2 abrexss.1 . . . . 5 𝑥𝐶
32nfcri 2744 . . . 4 𝑥 𝑧𝐶
4 eleq1 2675 . . . 4 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
5 vex 3175 . . . . 5 𝑧 ∈ V
65a1i 11 . . . 4 (∀𝑥𝐴 𝐵𝐶𝑧 ∈ V)
7 rspa 2913 . . . 4 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
81, 3, 4, 6, 7elabreximd 28538 . . 3 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) → 𝑧𝐶)
98ex 448 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑧𝐶))
109ssrdv 3573 1 (∀𝑥𝐴 𝐵𝐶 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  {cab 2595  wnfc 2737  wral 2895  wrex 2896  Vcvv 3172  wss 3539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-v 3174  df-in 3546  df-ss 3553
This theorem is referenced by:  funimass4f  28624  measvunilem  29408
  Copyright terms: Public domain W3C validator