MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs2difabs Structured version   Visualization version   GIF version

Theorem abs2difabs 14003
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2difabs ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))

Proof of Theorem abs2difabs
StepHypRef Expression
1 abs2dif 14001 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵𝐴)))
21ancoms 469 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵𝐴)))
3 abscl 13947 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
43recnd 10013 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5 abscl 13947 . . . . 5 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
65recnd 10013 . . . 4 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℂ)
7 negsubdi2 10285 . . . 4 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴)))
84, 6, 7syl2an 494 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴)))
9 abssub 13995 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
102, 8, 93brtr4d 4650 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
11 abs2dif 14001 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
12 resubcl 10290 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ)
133, 5, 12syl2an 494 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ)
14 subcl 10225 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
15 abscl 13947 . . . . 5 ((𝐴𝐵) ∈ ℂ → (abs‘(𝐴𝐵)) ∈ ℝ)
1614, 15syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
17 absle 13984 . . . 4 ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
1813, 16, 17syl2anc 692 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
19 lenegcon1 10477 . . . . 5 ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ↔ -(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵))))
2013, 16, 19syl2anc 692 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ↔ -(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵))))
2120anbi1d 740 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵))) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
2218, 21bitr4d 271 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
2310, 11, 22mpbir2and 956 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  cle 10020  cmin 10211  -cneg 10212  abscabs 13903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905
This theorem is referenced by:  abs2difabsd  14127  abscn2  14258  abs2difabsi  31277
  Copyright terms: Public domain W3C validator