MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absneg Structured version   Visualization version   GIF version

Theorem absneg 14137
Description: Absolute value of negative. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
absneg (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))

Proof of Theorem absneg
StepHypRef Expression
1 cjneg 14007 . . . . 5 (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
21oveq2d 6781 . . . 4 (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (-𝐴 · -(∗‘𝐴)))
3 cjcl 13965 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
4 mul2neg 10582 . . . . 5 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴)))
53, 4mpdan 705 . . . 4 (𝐴 ∈ ℂ → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴)))
62, 5eqtrd 2758 . . 3 (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (𝐴 · (∗‘𝐴)))
76fveq2d 6308 . 2 (𝐴 ∈ ℂ → (√‘(-𝐴 · (∗‘-𝐴))) = (√‘(𝐴 · (∗‘𝐴))))
8 negcl 10394 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
9 absval 14098 . . 3 (-𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴))))
108, 9syl 17 . 2 (𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴))))
11 absval 14098 . 2 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
127, 10, 113eqtr4d 2768 1 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1596  wcel 2103  cfv 6001  (class class class)co 6765  cc 10047   · cmul 10054  -cneg 10380  ccj 13956  csqrt 14093  abscabs 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-2 11192  df-cj 13959  df-re 13960  df-im 13961  df-abs 14096
This theorem is referenced by:  absnid  14158  absimle  14169  abslt  14174  absle  14175  abssub  14186  abs2dif2  14193  sqreulem  14219  absnegi  14259  absnegd  14308  cnheibor  22876  ftalem3  24921  qqhcn  30265  jm2.26lem3  37987
  Copyright terms: Public domain W3C validator