![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > absnpncan2d | Structured version Visualization version GIF version |
Description: Triangular inequality, combined with cancellation law for subtraction (applied twice). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
absnpncan2d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
absnpncan2d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
absnpncan2d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
absnpncan2d.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
absnpncan2d | ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ≤ (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absnpncan2d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | absnpncan2d.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
3 | 1, 2 | subcld 10584 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐷) ∈ ℂ) |
4 | 3 | abscld 14374 | . 2 ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ∈ ℝ) |
5 | absnpncan2d.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
6 | 1, 5 | subcld 10584 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) ∈ ℂ) |
7 | 6 | abscld 14374 | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) ∈ ℝ) |
8 | 5, 2 | subcld 10584 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐷) ∈ ℂ) |
9 | 8 | abscld 14374 | . . 3 ⊢ (𝜑 → (abs‘(𝐶 − 𝐷)) ∈ ℝ) |
10 | 7, 9 | readdcld 10261 | . 2 ⊢ (𝜑 → ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐷))) ∈ ℝ) |
11 | absnpncan2d.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
12 | 1, 11 | subcld 10584 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
13 | 12 | abscld 14374 | . . . 4 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
14 | 11, 5 | subcld 10584 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℂ) |
15 | 14 | abscld 14374 | . . . 4 ⊢ (𝜑 → (abs‘(𝐵 − 𝐶)) ∈ ℝ) |
16 | 13, 15 | readdcld 10261 | . . 3 ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) ∈ ℝ) |
17 | 16, 9 | readdcld 10261 | . 2 ⊢ (𝜑 → (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷))) ∈ ℝ) |
18 | 1, 5, 2 | absnpncand 40007 | . 2 ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐷)))) |
19 | 1, 11, 5 | absnpncand 40007 | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶)))) |
20 | 7, 16, 9, 19 | leadd1dd 10833 | . 2 ⊢ (𝜑 → ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐷))) ≤ (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷)))) |
21 | 4, 10, 17, 18, 20 | letrd 10386 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ≤ (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 + caddc 10131 ≤ cle 10267 − cmin 10458 abscabs 14173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 |
This theorem is referenced by: absnpncan3d 40020 |
Copyright terms: Public domain | W3C validator |