MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absrdbnd Structured version   Visualization version   GIF version

Theorem absrdbnd 14704
Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
absrdbnd (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))

Proof of Theorem absrdbnd
StepHypRef Expression
1 halfre 11854 . . . . . . . 8 (1 / 2) ∈ ℝ
2 readdcl 10623 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
31, 2mpan2 689 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
4 reflcl 13169 . . . . . . 7 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
65recnd 10672 . . . . 5 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
7 abscl 14641 . . . . 5 ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
9 recn 10630 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 abscl 14641 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
119, 10syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
12 1re 10644 . . . . 5 1 ∈ ℝ
1312a1i 11 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
148, 11resubcld 11071 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ∈ ℝ)
15 resubcl 10953 . . . . . . . 8 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
165, 15mpancom 686 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
1716recnd 10672 . . . . . 6 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
18 abscl 14641 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
1917, 18syl 17 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
20 abs2dif 14695 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
216, 9, 20syl2anc 586 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
221a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
23 rddif 14703 . . . . . 6 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
24 halflt1 11858 . . . . . . . 8 (1 / 2) < 1
251, 12, 24ltleii 10766 . . . . . . 7 (1 / 2) ≤ 1
2625a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ≤ 1)
2719, 22, 13, 23, 26letrd 10800 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ 1)
2814, 19, 13, 21, 27letrd 10800 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ 1)
298, 11, 13, 28subled 11246 . . 3 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴))
303flcld 13171 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
31 nn0abscl 14675 . . . . . . 7 ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3332nn0zd 12088 . . . . 5 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ)
34 peano2zm 12028 . . . . 5 ((abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
3533, 34syl 17 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
36 flge 13178 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ) → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3711, 35, 36syl2anc 586 . . 3 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3829, 37mpbid 234 . 2 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)))
39 reflcl 13169 . . . 4 ((abs‘𝐴) ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
4011, 39syl 17 . . 3 (𝐴 ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
418, 13, 40lesubaddd 11240 . 2 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)) ↔ (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)))
4238, 41mpbid 234 1 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2113   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  1c1 10541   + caddc 10543  cle 10679  cmin 10873   / cdiv 11300  2c2 11695  0cn0 11900  cz 11984  cfl 13163  abscabs 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator