![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abss | Structured version Visualization version GIF version |
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
abss | ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2 2774 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
2 | 1 | sseq2i 3663 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
3 | ss2ab 3703 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | bitr3i 266 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∈ wcel 2030 {cab 2637 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-in 3614 df-ss 3621 |
This theorem is referenced by: abssdv 3709 rabss 3712 uniiunlem 3724 iunss 4593 moabex 4957 reliun 5272 axdc2lem 9308 mptelee 25820 fpwrelmap 29636 ss2iundf 38268 iunssf 39577 hoidmvlelem1 41130 |
Copyright terms: Public domain | W3C validator |