![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssexg | Structured version Visualization version GIF version |
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
abssexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4999 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | df-pw 4304 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
3 | 2 | eleq1i 2830 | . . 3 ⊢ (𝒫 𝐴 ∈ V ↔ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) |
4 | simpl 474 | . . . . 5 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑) → 𝑥 ⊆ 𝐴) | |
5 | 4 | ss2abi 3815 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} |
6 | ssexg 4956 | . . . 4 ⊢ (({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∧ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | |
7 | 5, 6 | mpan 708 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
8 | 3, 7 | sylbi 207 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
9 | 1, 8 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 {cab 2746 Vcvv 3340 ⊆ wss 3715 𝒫 cpw 4302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-pow 4992 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-pw 4304 |
This theorem is referenced by: pmex 8028 tgval 20961 |
Copyright terms: Public domain | W3C validator |