MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abstri Structured version   Visualization version   GIF version

Theorem abstri 14020
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Proof of Theorem abstri
StepHypRef Expression
1 2re 11050 . . . . . 6 2 ∈ ℝ
21a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ)
3 simpl 473 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54cjcld 13886 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
63, 5mulcld 10020 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
76recld 13884 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ∈ ℝ)
82, 7remulcld 10030 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ∈ ℝ)
9 abscl 13968 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
103, 9syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℝ)
11 abscl 13968 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
124, 11syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
1310, 12remulcld 10030 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) ∈ ℝ)
142, 13remulcld 10030 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℝ)
1510resqcld 12991 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℝ)
1612resqcld 12991 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℝ)
1715, 16readdcld 10029 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ ℝ)
18 releabs 14011 . . . . . . 7 ((𝐴 · (∗‘𝐵)) ∈ ℂ → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
196, 18syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
20 absmul 13984 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
213, 5, 20syl2anc 692 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
22 abscj 13969 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(∗‘𝐵)) = (abs‘𝐵))
234, 22syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(∗‘𝐵)) = (abs‘𝐵))
2423oveq2d 6631 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘(∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2521, 24eqtrd 2655 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2619, 25breqtrd 4649 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)))
27 2rp 11797 . . . . . . 7 2 ∈ ℝ+
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ+)
297, 13, 28lemul2d 11876 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)) ↔ (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵)))))
3026, 29mpbid 222 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵))))
318, 14, 17, 30leadd2dd 10602 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) ≤ ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
32 sqabsadd 13972 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
3310recnd 10028 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℂ)
3412recnd 10028 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℂ)
35 binom2 12935 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3633, 34, 35syl2anc 692 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3715recnd 10028 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℂ)
3814recnd 10028 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℂ)
3916recnd 10028 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℂ)
4037, 38, 39add32d 10223 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4136, 40eqtrd 2655 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4231, 32, 413brtr4d 4655 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2))
43 addcl 9978 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
44 abscl 13968 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4543, 44syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4610, 12readdcld 10029 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) + (abs‘𝐵)) ∈ ℝ)
47 absge0 13977 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → 0 ≤ (abs‘(𝐴 + 𝐵)))
4843, 47syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘(𝐴 + 𝐵)))
49 absge0 13977 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
503, 49syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐴))
51 absge0 13977 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
524, 51syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐵))
5310, 12, 50, 52addge0d 10563 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((abs‘𝐴) + (abs‘𝐵)))
5445, 46, 48, 53le2sqd 13000 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) ↔ ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2)))
5542, 54mpbird 247 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4623  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896   + caddc 9899   · cmul 9901  cle 10035  2c2 11030  +crp 11792  cexp 12816  ccj 13786  cre 13787  abscabs 13924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926
This theorem is referenced by:  abs3dif  14021  abs2dif2  14023  abstrii  14097  abstrid  14145  absabv  19743  cnnv  27420  ftc1anclem7  33162  ftc1anclem8  33163
  Copyright terms: Public domain W3C validator