MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Structured version   Visualization version   GIF version

Theorem abvcxp 24993
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a 𝐴 = (AbsVal‘𝑅)
abvcxp.b 𝐵 = (Base‘𝑅)
abvcxp.f 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
Assertion
Ref Expression
abvcxp ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem abvcxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvcxp.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐴 = (AbsVal‘𝑅))
3 abvcxp.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐵 = (Base‘𝑅))
5 eqidd 2515 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (+g𝑅) = (+g𝑅))
6 eqidd 2515 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (.r𝑅) = (.r𝑅))
7 eqidd 2515 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) = (0g𝑅))
81abvrcl 18551 . . 3 (𝐹𝐴𝑅 ∈ Ring)
98adantr 479 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑅 ∈ Ring)
101, 3abvcl 18554 . . . . 5 ((𝐹𝐴𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
1110adantlr 746 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
121, 3abvge0 18555 . . . . 5 ((𝐹𝐴𝑥𝐵) → 0 ≤ (𝐹𝑥))
1312adantlr 746 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 0 ≤ (𝐹𝑥))
14 simpr 475 . . . . . . 7 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ (0(,]1))
15 0xr 9841 . . . . . . . 8 0 ∈ ℝ*
16 1re 9794 . . . . . . . 8 1 ∈ ℝ
17 elioc2 11976 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1)))
1815, 16, 17mp2an 703 . . . . . . 7 (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
1914, 18sylib 206 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
2019simp1d 1065 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℝ)
2120adantr 479 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 𝑆 ∈ ℝ)
2211, 13, 21recxpcld 24156 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → ((𝐹𝑥)↑𝑐𝑆) ∈ ℝ)
23 abvcxp.f . . 3 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
2422, 23fmptd 6176 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺:𝐵⟶ℝ)
25 eqid 2514 . . . . . 6 (0g𝑅) = (0g𝑅)
263, 25ring0cl 18299 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
279, 26syl 17 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) ∈ 𝐵)
28 fveq2 5987 . . . . . 6 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
2928oveq1d 6441 . . . . 5 (𝑥 = (0g𝑅) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
30 ovex 6454 . . . . 5 ((𝐹‘(0g𝑅))↑𝑐𝑆) ∈ V
3129, 23, 30fvmpt 6075 . . . 4 ((0g𝑅) ∈ 𝐵 → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
3227, 31syl 17 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
331, 25abv0 18561 . . . . . 6 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
3433adantr 479 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐹‘(0g𝑅)) = 0)
3534oveq1d 6441 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = (0↑𝑐𝑆))
3620recnd 9823 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℂ)
3719simp2d 1066 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 0 < 𝑆)
3837gt0ne0d 10341 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ≠ 0)
3936, 380cxpd 24143 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0↑𝑐𝑆) = 0)
4035, 39eqtrd 2548 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = 0)
4132, 40eqtrd 2548 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = 0)
42 simp1l 1077 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝐹𝐴)
43 simp2 1054 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑦𝐵)
441, 3abvcl 18554 . . . . . . 7 ((𝐹𝐴𝑦𝐵) → (𝐹𝑦) ∈ ℝ)
4542, 43, 44syl2anc 690 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ)
461, 3, 25abvgt0 18558 . . . . . . 7 ((𝐹𝐴𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
47463adant1r 1310 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
4845, 47elrpd 11611 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ+)
49203ad2ant1 1074 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑆 ∈ ℝ)
5048, 49rpcxpcld 24163 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ+)
5150rpgt0d 11617 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < ((𝐹𝑦)↑𝑐𝑆))
52 fveq2 5987 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5352oveq1d 6441 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑦)↑𝑐𝑆))
54 ovex 6454 . . . . 5 ((𝐹𝑦)↑𝑐𝑆) ∈ V
5553, 23, 54fvmpt 6075 . . . 4 (𝑦𝐵 → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5643, 55syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5751, 56breqtrrd 4509 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐺𝑦))
58 simp1l 1077 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝐹𝐴)
59 simp2l 1079 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑦𝐵)
60 simp3l 1081 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑧𝐵)
61 eqid 2514 . . . . . . 7 (.r𝑅) = (.r𝑅)
621, 3, 61abvmul 18559 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6358, 59, 60, 62syl3anc 1317 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6463oveq1d 6441 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆))
6558, 59, 44syl2anc 690 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑦) ∈ ℝ)
661, 3abvge0 18555 . . . . . 6 ((𝐹𝐴𝑦𝐵) → 0 ≤ (𝐹𝑦))
6758, 59, 66syl2anc 690 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑦))
681, 3abvcl 18554 . . . . . 6 ((𝐹𝐴𝑧𝐵) → (𝐹𝑧) ∈ ℝ)
6958, 60, 68syl2anc 690 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑧) ∈ ℝ)
701, 3abvge0 18555 . . . . . 6 ((𝐹𝐴𝑧𝐵) → 0 ≤ (𝐹𝑧))
7158, 60, 70syl2anc 690 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑧))
72363ad2ant1 1074 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℂ)
7365, 67, 69, 71, 72mulcxpd 24161 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7464, 73eqtrd 2548 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7593ad2ant1 1074 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Ring)
763, 61ringcl 18291 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
7775, 59, 60, 76syl3anc 1317 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
78 fveq2 5987 . . . . . 6 (𝑥 = (𝑦(.r𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(.r𝑅)𝑧)))
7978oveq1d 6441 . . . . 5 (𝑥 = (𝑦(.r𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
80 ovex 6454 . . . . 5 ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) ∈ V
8179, 23, 80fvmpt 6075 . . . 4 ((𝑦(.r𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8277, 81syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8359, 55syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
84 fveq2 5987 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
8584oveq1d 6441 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑧)↑𝑐𝑆))
86 ovex 6454 . . . . . 6 ((𝐹𝑧)↑𝑐𝑆) ∈ V
8785, 23, 86fvmpt 6075 . . . . 5 (𝑧𝐵 → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8860, 87syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8983, 88oveq12d 6444 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) · (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
9074, 82, 893eqtr4d 2558 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
91 ringgrp 18282 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9275, 91syl 17 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Grp)
93 eqid 2514 . . . . . . . 8 (+g𝑅) = (+g𝑅)
943, 93grpcl 17145 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
9592, 59, 60, 94syl3anc 1317 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
961, 3abvcl 18554 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
9758, 95, 96syl2anc 690 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
981, 3abvge0 18555 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
9958, 95, 98syl2anc 690 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
100193ad2ant1 1074 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
101100simp1d 1065 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ)
10297, 99, 101recxpcld 24156 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ ℝ)
10365, 69readdcld 9824 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦) + (𝐹𝑧)) ∈ ℝ)
10465, 69, 67, 71addge0d 10352 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ ((𝐹𝑦) + (𝐹𝑧)))
105103, 104, 101recxpcld 24156 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ∈ ℝ)
10665, 67, 101recxpcld 24156 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ)
10769, 71, 101recxpcld 24156 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑧)↑𝑐𝑆) ∈ ℝ)
108106, 107readdcld 9824 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)) ∈ ℝ)
1091, 3, 93abvtri 18560 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
11058, 59, 60, 109syl3anc 1317 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
111100simp2d 1066 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 < 𝑆)
112101, 111elrpd 11611 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ+)
11397, 99, 103, 104, 112cxple2d 24160 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)) ↔ ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆)))
114110, 113mpbid 220 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆))
115100simp3d 1067 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ≤ 1)
11665, 67, 69, 71, 112, 115cxpaddle 24180 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
117102, 105, 108, 114, 116letrd 9945 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
118 fveq2 5987 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(+g𝑅)𝑧)))
119118oveq1d 6441 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
120 ovex 6454 . . . . 5 ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ V
121119, 23, 120fvmpt 6075 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12295, 121syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12383, 88oveq12d 6444 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) + (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
124117, 122, 1233brtr4d 4513 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐺𝑦) + (𝐺𝑧)))
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 18550 1 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938  wne 2684   class class class wbr 4481  cmpt 4541  cfv 5689  (class class class)co 6426  cc 9689  cr 9690  0cc0 9691  1c1 9692   + caddc 9694   · cmul 9696  *cxr 9828   < clt 9829  cle 9830  (,]cioc 11916  Basecbs 15579  +gcplusg 15652  .rcmulr 15653  0gc0g 15807  Grpcgrp 17137  Ringcrg 18277  AbsValcabv 18546  𝑐ccxp 23993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769  ax-addf 9770  ax-mulf 9771
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-of 6671  df-om 6834  df-1st 6934  df-2nd 6935  df-supp 7058  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-2o 7324  df-oadd 7327  df-er 7505  df-map 7622  df-pm 7623  df-ixp 7671  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-fsupp 8035  df-fi 8076  df-sup 8107  df-inf 8108  df-oi 8174  df-card 8524  df-cda 8749  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-5 10837  df-6 10838  df-7 10839  df-8 10840  df-9 10841  df-n0 11048  df-z 11119  df-dec 11234  df-uz 11428  df-q 11531  df-rp 11575  df-xneg 11688  df-xadd 11689  df-xmul 11690  df-ioo 11919  df-ioc 11920  df-ico 11921  df-icc 11922  df-fz 12066  df-fzo 12203  df-fl 12323  df-mod 12399  df-seq 12532  df-exp 12591  df-fac 12791  df-bc 12820  df-hash 12848  df-shft 13514  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-limsup 13910  df-clim 13933  df-rlim 13934  df-sum 14134  df-ef 14506  df-sin 14508  df-cos 14509  df-pi 14511  df-struct 15581  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-ress 15586  df-plusg 15665  df-mulr 15666  df-starv 15667  df-sca 15668  df-vsca 15669  df-ip 15670  df-tset 15671  df-ple 15672  df-ds 15675  df-unif 15676  df-hom 15677  df-cco 15678  df-rest 15790  df-topn 15791  df-0g 15809  df-gsum 15810  df-topgen 15811  df-pt 15812  df-prds 15815  df-xrs 15869  df-qtop 15875  df-imas 15876  df-xps 15879  df-mre 15961  df-mrc 15962  df-acs 15964  df-mgm 16957  df-sgrp 16999  df-mnd 17010  df-submnd 17051  df-grp 17140  df-minusg 17141  df-mulg 17256  df-cntz 17465  df-cmn 17926  df-mgp 18220  df-ring 18279  df-abv 18547  df-psmet 19463  df-xmet 19464  df-met 19465  df-bl 19466  df-mopn 19467  df-fbas 19468  df-fg 19469  df-cnfld 19472  df-top 20424  df-bases 20425  df-topon 20426  df-topsp 20427  df-cld 20536  df-ntr 20537  df-cls 20538  df-nei 20615  df-lp 20653  df-perf 20654  df-cn 20744  df-cnp 20745  df-haus 20832  df-tx 21078  df-hmeo 21271  df-fil 21363  df-fm 21455  df-flim 21456  df-flf 21457  df-xms 21837  df-ms 21838  df-tms 21839  df-cncf 22412  df-limc 23311  df-dv 23312  df-log 23994  df-cxp 23995
This theorem is referenced by:  ostth2  25015  ostth  25017
  Copyright terms: Public domain W3C validator