MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Structured version   Visualization version   GIF version

Theorem abvdiv 19611
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdiv.p / = (/r𝑅)
Assertion
Ref Expression
abvdiv (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 767 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simpr1 1190 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simpll 765 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑅 ∈ DivRing)
4 simpr2 1191 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌𝐵)
5 simpr3 1192 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌0 )
6 abvneg.b . . . . . 6 𝐵 = (Base‘𝑅)
7 abvrec.z . . . . . 6 0 = (0g𝑅)
8 eqid 2824 . . . . . 6 (invr𝑅) = (invr𝑅)
96, 7, 8drnginvrcl 19522 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑌𝐵𝑌0 ) → ((invr𝑅)‘𝑌) ∈ 𝐵)
103, 4, 5, 9syl3anc 1367 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((invr𝑅)‘𝑌) ∈ 𝐵)
11 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
12 eqid 2824 . . . . 5 (.r𝑅) = (.r𝑅)
1311, 6, 12abvmul 19603 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
141, 2, 10, 13syl3anc 1367 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
1511, 6, 7, 8abvrec 19610 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
16153adantr1 1165 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
1716oveq2d 7175 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
1814, 17eqtrd 2859 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
19 eqid 2824 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
206, 19, 7drngunit 19510 . . . . . 6 (𝑅 ∈ DivRing → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
213, 20syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
224, 5, 21mpbir2and 711 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌 ∈ (Unit‘𝑅))
23 abvdiv.p . . . . 5 / = (/r𝑅)
246, 12, 19, 8, 23dvrval 19438 . . . 4 ((𝑋𝐵𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
252, 22, 24syl2anc 586 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2625fveq2d 6677 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))))
2711, 6abvcl 19598 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
281, 2, 27syl2anc 586 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
2928recnd 10672 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
3011, 6abvcl 19598 . . . . 5 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
311, 4, 30syl2anc 586 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
3231recnd 10672 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
3311, 6, 7abvne0 19601 . . . 4 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
341, 4, 5, 33syl3anc 1367 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
3529, 32, 34divrecd 11422 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) / (𝐹𝑌)) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
3618, 26, 353eqtr4d 2869 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540  1c1 10541   · cmul 10545   / cdiv 11300  Basecbs 16486  .rcmulr 16569  0gc0g 16716  Unitcui 19392  invrcinvr 19424  /rcdvr 19435  DivRingcdr 19505  AbsValcabv 19590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-ico 12747  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19507  df-abv 19591
This theorem is referenced by:  ostthlem1  26206
  Copyright terms: Public domain W3C validator