MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Structured version   Visualization version   GIF version

Theorem abvdiv 18758
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdiv.p / = (/r𝑅)
Assertion
Ref Expression
abvdiv (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 791 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simpr1 1065 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simpll 789 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑅 ∈ DivRing)
4 simpr2 1066 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌𝐵)
5 simpr3 1067 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌0 )
6 abvneg.b . . . . . 6 𝐵 = (Base‘𝑅)
7 abvrec.z . . . . . 6 0 = (0g𝑅)
8 eqid 2621 . . . . . 6 (invr𝑅) = (invr𝑅)
96, 7, 8drnginvrcl 18685 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑌𝐵𝑌0 ) → ((invr𝑅)‘𝑌) ∈ 𝐵)
103, 4, 5, 9syl3anc 1323 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((invr𝑅)‘𝑌) ∈ 𝐵)
11 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
12 eqid 2621 . . . . 5 (.r𝑅) = (.r𝑅)
1311, 6, 12abvmul 18750 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
141, 2, 10, 13syl3anc 1323 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))))
1511, 6, 7, 8abvrec 18757 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
16153adantr1 1218 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘((invr𝑅)‘𝑌)) = (1 / (𝐹𝑌)))
1716oveq2d 6620 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹‘((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
1814, 17eqtrd 2655 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
19 eqid 2621 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
206, 19, 7drngunit 18673 . . . . . 6 (𝑅 ∈ DivRing → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
213, 20syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑌 ∈ (Unit‘𝑅) ↔ (𝑌𝐵𝑌0 )))
224, 5, 21mpbir2and 956 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → 𝑌 ∈ (Unit‘𝑅))
23 abvdiv.p . . . . 5 / = (/r𝑅)
246, 12, 19, 8, 23dvrval 18606 . . . 4 ((𝑋𝐵𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
252, 22, 24syl2anc 692 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2625fveq2d 6152 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = (𝐹‘(𝑋(.r𝑅)((invr𝑅)‘𝑌))))
2711, 6abvcl 18745 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
281, 2, 27syl2anc 692 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
2928recnd 10012 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
3011, 6abvcl 18745 . . . . 5 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
311, 4, 30syl2anc 692 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
3231recnd 10012 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
3311, 6, 7abvne0 18748 . . . 4 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
341, 4, 5, 33syl3anc 1323 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
3529, 32, 34divrecd 10748 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → ((𝐹𝑋) / (𝐹𝑌)) = ((𝐹𝑋) · (1 / (𝐹𝑌))))
3618, 26, 353eqtr4d 2665 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   · cmul 9885   / cdiv 10628  Basecbs 15781  .rcmulr 15863  0gc0g 16021  Unitcui 18560  invrcinvr 18592  /rcdvr 18603  DivRingcdr 18668  AbsValcabv 18737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-ico 12123  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-abv 18738
This theorem is referenced by:  ostthlem1  25216
  Copyright terms: Public domain W3C validator