MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Visualization version   GIF version

Theorem abvneg 19597
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvneg.p 𝑁 = (invg𝑅)
Assertion
Ref Expression
abvneg ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 19584 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
32adantr 483 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑅 ∈ Ring)
4 ringgrp 19294 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
52, 4syl 17 . . . . . 6 (𝐹𝐴𝑅 ∈ Grp)
6 abvneg.b . . . . . . 7 𝐵 = (Base‘𝑅)
7 abvneg.p . . . . . . 7 𝑁 = (invg𝑅)
86, 7grpinvcl 18143 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
95, 8sylan 582 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
10 simpr 487 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑋𝐵)
11 eqid 2819 . . . . . 6 (1r𝑅) = (1r𝑅)
12 eqid 2819 . . . . . 6 (0g𝑅) = (0g𝑅)
136, 11, 12ring1eq0 19332 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ 𝐵𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
143, 9, 10, 13syl3anc 1366 . . . 4 ((𝐹𝐴𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
1514imp 409 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝑁𝑋) = 𝑋)
1615fveq2d 6667 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
176, 11ringidcl 19310 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
182, 17syl 17 . . . . . . . . . . . . . . 15 (𝐹𝐴 → (1r𝑅) ∈ 𝐵)
196, 7grpinvcl 18143 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
205, 18, 19syl2anc 586 . . . . . . . . . . . . . 14 (𝐹𝐴 → (𝑁‘(1r𝑅)) ∈ 𝐵)
211, 6abvcl 19587 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2220, 21mpdan 685 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2322recnd 10661 . . . . . . . . . . . 12 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℂ)
2423sqvald 13499 . . . . . . . . . . 11 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
25 eqid 2819 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 25abvmul 19592 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
2720, 20, 26mpd3an23 1457 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
286, 25, 7, 2, 20, 18ringmneg2 19339 . . . . . . . . . . . . 13 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))))
296, 25, 11, 7, 2, 18ringnegl 19336 . . . . . . . . . . . . . 14 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅)) = (𝑁‘(1r𝑅)))
3029fveq2d 6667 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))) = (𝑁‘(𝑁‘(1r𝑅))))
316, 7grpinvinv 18158 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
325, 18, 31syl2anc 586 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
3328, 30, 323eqtrd 2858 . . . . . . . . . . . 12 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (1r𝑅))
3433fveq2d 6667 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = (𝐹‘(1r𝑅)))
3524, 27, 343eqtr2d 2860 . . . . . . . . . 10 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
3635adantr 483 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
371, 11, 12abv1z 19595 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(1r𝑅)) = 1)
3836, 37eqtrd 2854 . . . . . . . 8 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = 1)
39 sq1 13550 . . . . . . . 8 (1↑2) = 1
4038, 39syl6eqr 2872 . . . . . . 7 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2))
411, 6abvge0 19588 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
4220, 41mpdan 685 . . . . . . . . 9 (𝐹𝐴 → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
43 1re 10633 . . . . . . . . . 10 1 ∈ ℝ
44 0le1 11155 . . . . . . . . . 10 0 ≤ 1
45 sq11 13488 . . . . . . . . . 10 ((((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4643, 44, 45mpanr12 703 . . . . . . . . 9 (((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4722, 42, 46syl2anc 586 . . . . . . . 8 (𝐹𝐴 → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4847biimpa 479 . . . . . . 7 ((𝐹𝐴 ∧ ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
4940, 48syldan 593 . . . . . 6 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5049adantlr 713 . . . . 5 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5150oveq1d 7163 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (1 · (𝐹𝑋)))
52 simpl 485 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → 𝐹𝐴)
5320adantr 483 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
541, 6, 25abvmul 19592 . . . . . . 7 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
5552, 53, 10, 54syl3anc 1366 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
566, 25, 11, 7, 3, 10ringnegl 19336 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → ((𝑁‘(1r𝑅))(.r𝑅)𝑋) = (𝑁𝑋))
5756fveq2d 6667 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = (𝐹‘(𝑁𝑋)))
5855, 57eqtr3d 2856 . . . . 5 ((𝐹𝐴𝑋𝐵) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
5958adantr 483 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
6051, 59eqtr3d 2856 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
611, 6abvcl 19587 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
6261recnd 10661 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℂ)
6362mulid2d 10651 . . . 4 ((𝐹𝐴𝑋𝐵) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6463adantr 483 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6560, 64eqtr3d 2856 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
6616, 65pm2.61dane 3102 1 ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529  1c1 10530   · cmul 10534  cle 10668  2c2 11684  cexp 13421  Basecbs 16475  .rcmulr 16558  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096  1rcur 19243  Ringcrg 19289  AbsValcabv 19579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-ico 12736  df-seq 13362  df-exp 13422  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19232  df-ur 19244  df-ring 19291  df-abv 19580
This theorem is referenced by:  abvsubtri  19598  ostthlem1  26195  ostth3  26206
  Copyright terms: Public domain W3C validator