MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Structured version   Visualization version   GIF version

Theorem abvres 19041
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a 𝐴 = (AbsVal‘𝑅)
abvres.s 𝑆 = (𝑅s 𝐶)
abvres.b 𝐵 = (AbsVal‘𝑆)
Assertion
Ref Expression
abvres ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem abvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3 𝐵 = (AbsVal‘𝑆)
21a1i 11 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐵 = (AbsVal‘𝑆))
3 abvres.s . . . 4 𝑆 = (𝑅s 𝐶)
43subrgbas 18991 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 = (Base‘𝑆))
54adantl 473 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 = (Base‘𝑆))
6 eqid 2760 . . . 4 (+g𝑅) = (+g𝑅)
73, 6ressplusg 16195 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
87adantl 473 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (+g𝑅) = (+g𝑆))
9 eqid 2760 . . . 4 (.r𝑅) = (.r𝑅)
103, 9ressmulr 16208 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1110adantl 473 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (.r𝑅) = (.r𝑆))
12 subrgsubg 18988 . . . 4 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ∈ (SubGrp‘𝑅))
1312adantl 473 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubGrp‘𝑅))
14 eqid 2760 . . . 4 (0g𝑅) = (0g𝑅)
153, 14subg0 17801 . . 3 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝑆))
1613, 15syl 17 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (0g𝑅) = (0g𝑆))
173subrgring 18985 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
1817adantl 473 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
19 abvres.a . . . 4 𝐴 = (AbsVal‘𝑅)
20 eqid 2760 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2119, 20abvf 19025 . . 3 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
2220subrgss 18983 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ⊆ (Base‘𝑅))
23 fssres 6231 . . 3 ((𝐹:(Base‘𝑅)⟶ℝ ∧ 𝐶 ⊆ (Base‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2421, 22, 23syl2an 495 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2514subg0cl 17803 . . . 4 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐶)
26 fvres 6368 . . . 4 ((0g𝑅) ∈ 𝐶 → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2713, 25, 263syl 18 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2819, 14abv0 19033 . . . 4 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
2928adantr 472 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
3027, 29eqtrd 2794 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = 0)
31 simp1l 1240 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝐹𝐴)
3222adantl 473 . . . . . 6 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
3332sselda 3744 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶) → 𝑥 ∈ (Base‘𝑅))
34333adant3 1127 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
35 simp3 1133 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
3619, 20, 14abvgt0 19030 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
3731, 34, 35, 36syl3anc 1477 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
38 fvres 6368 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
39383ad2ant2 1129 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
4037, 39breqtrrd 4832 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < ((𝐹𝐶)‘𝑥))
41 simp1l 1240 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐹𝐴)
42 simp1r 1241 . . . . . 6 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ∈ (SubRing‘𝑅))
4342, 22syl 17 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ⊆ (Base‘𝑅))
44 simp2l 1242 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥𝐶)
4543, 44sseldd 3745 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
46 simp3l 1244 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦𝐶)
4743, 46sseldd 3745 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
4819, 20, 9abvmul 19031 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
4941, 45, 47, 48syl3anc 1477 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
509subrgmcl 18994 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5142, 44, 46, 50syl3anc 1477 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
52 fvres 6368 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝐶 → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
5351, 52syl 17 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
5444, 38syl 17 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
55 fvres 6368 . . . . 5 (𝑦𝐶 → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
5646, 55syl 17 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
5754, 56oveq12d 6831 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
5849, 53, 573eqtr4d 2804 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)))
5919, 20, 6abvtri 19032 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
6041, 45, 47, 59syl3anc 1477 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
616subrgacl 18993 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6242, 44, 46, 61syl3anc 1477 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
63 fvres 6368 . . . 4 ((𝑥(+g𝑅)𝑦) ∈ 𝐶 → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6462, 63syl 17 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6554, 56oveq12d 6831 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
6660, 64, 653brtr4d 4836 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) ≤ (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)))
672, 5, 8, 11, 16, 18, 24, 30, 40, 58, 66isabvd 19022 1 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wss 3715   class class class wbr 4804  cres 5268  wf 6045  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  Basecbs 16059  s cress 16060  +gcplusg 16143  .rcmulr 16144  0gc0g 16302  SubGrpcsubg 17789  Ringcrg 18747  SubRingcsubrg 18978  AbsValcabv 19018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-ico 12374  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-subg 17792  df-mgp 18690  df-ring 18749  df-subrg 18980  df-abv 19019
This theorem is referenced by:  subrgnrg  22678  qabsabv  25517
  Copyright terms: Public domain W3C validator