MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtri Structured version   Visualization version   GIF version

Theorem abvtri 18599
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abvtri.p + = (+g𝑅)
Assertion
Ref Expression
abvtri ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))

Proof of Theorem abvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . . 8 𝐴 = (AbsVal‘𝑅)
21abvrcl 18590 . . . . . . 7 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . . . 8 𝐵 = (Base‘𝑅)
4 abvtri.p . . . . . . . 8 + = (+g𝑅)
5 eqid 2609 . . . . . . . 8 (.r𝑅) = (.r𝑅)
6 eqid 2609 . . . . . . . 8 (0g𝑅) = (0g𝑅)
71, 3, 4, 5, 6isabv 18588 . . . . . . 7 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . . . 6 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 254 . . . . 5 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
109simprd 477 . . . 4 (𝐹𝐴 → ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
11 simpr 475 . . . . . . 7 (((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1211ralimi 2935 . . . . . 6 (∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → ∀𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1312adantl 480 . . . . 5 ((((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1413ralimi 2935 . . . 4 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1510, 14syl 17 . . 3 (𝐹𝐴 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
16 oveq1 6534 . . . . . 6 (𝑥 = 𝑋 → (𝑥 + 𝑦) = (𝑋 + 𝑦))
1716fveq2d 6092 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
18 fveq2 6088 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1918oveq1d 6542 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹𝑋) + (𝐹𝑦)))
2017, 19breq12d 4590 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) ≤ ((𝐹𝑋) + (𝐹𝑦))))
21 oveq2 6535 . . . . . 6 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
2221fveq2d 6092 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
23 fveq2 6088 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2423oveq2d 6543 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) + (𝐹𝑦)) = ((𝐹𝑋) + (𝐹𝑌)))
2522, 24breq12d 4590 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) ≤ ((𝐹𝑋) + (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
2620, 25rspc2v 3292 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
2715, 26syl5com 31 . 2 (𝐹𝐴 → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
28273impib 1253 1 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895   class class class wbr 4577  wf 5786  cfv 5790  (class class class)co 6527  0cc0 9792   + caddc 9795   · cmul 9797  +∞cpnf 9927  cle 9931  [,)cico 12004  Basecbs 15641  +gcplusg 15714  .rcmulr 15715  0gc0g 15869  Ringcrg 18316  AbsValcabv 18585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-map 7723  df-abv 18586
This theorem is referenced by:  abvsubtri  18604  abvres  18608  abvcxp  25021  qabvle  25031  ostth2lem2  25040  ostth3  25044
  Copyright terms: Public domain W3C validator