Step | Hyp | Ref
| Expression |
1 | | uniexr 7089 |
. . . 4
⊢ (∪ 𝐴
∈ dom card → 𝐴
∈ V) |
2 | | dfac8b 8967 |
. . . 4
⊢ (∪ 𝐴
∈ dom card → ∃𝑟 𝑟 We ∪ 𝐴) |
3 | | dfac8c 8969 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
4 | 1, 2, 3 | sylc 65 |
. . 3
⊢ (∪ 𝐴
∈ dom card → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) |
5 | 4 | adantr 472 |
. 2
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) |
6 | | nelne2 2993 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ ∅ ∈ 𝐴) → 𝑥 ≠ ∅) |
7 | 6 | ancoms 468 |
. . . . . . . . . . 11
⊢ ((¬
∅ ∈ 𝐴 ∧
𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
8 | 7 | adantll 752 |
. . . . . . . . . 10
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
9 | | pm2.27 42 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → (𝑔‘𝑥) ∈ 𝑥)) |
10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → (𝑔‘𝑥) ∈ 𝑥)) |
11 | 10 | ralimdva 3064 |
. . . . . . . 8
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥)) |
12 | 11 | imp 444 |
. . . . . . 7
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥) |
13 | | fveq2 6304 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑔‘𝑥) = (𝑔‘𝑦)) |
14 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
15 | 13, 14 | eleq12d 2797 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑦) ∈ 𝑦)) |
16 | 15 | rspccva 3412 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝑔‘𝑥) ∈ 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ 𝑦) |
17 | 12, 16 | sylan 489 |
. . . . . 6
⊢ ((((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ 𝑦) |
18 | | elunii 4549 |
. . . . . 6
⊢ (((𝑔‘𝑦) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ∪ 𝐴) |
19 | 17, 18 | sylancom 704 |
. . . . 5
⊢ ((((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ∪ 𝐴) |
20 | | eqid 2724 |
. . . . 5
⊢ (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) |
21 | 19, 20 | fmptd 6500 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴) |
22 | 1 | ad2antrr 764 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → 𝐴 ∈ V) |
23 | | elex 3316 |
. . . . 5
⊢ (∪ 𝐴
∈ dom card → ∪ 𝐴 ∈ V) |
24 | 23 | ad2antrr 764 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∪ 𝐴 ∈ V) |
25 | | fex2 7238 |
. . . 4
⊢ (((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ 𝐴 ∈ V ∧ ∪
𝐴 ∈ V) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) ∈ V) |
26 | 21, 22, 24, 25 | syl3anc 1439 |
. . 3
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) ∈ V) |
27 | | fveq2 6304 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑔‘𝑦) = (𝑔‘𝑥)) |
28 | | fvex 6314 |
. . . . . . . 8
⊢ (𝑔‘𝑥) ∈ V |
29 | 27, 20, 28 | fvmpt 6396 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) = (𝑔‘𝑥)) |
30 | 29 | eleq1d 2788 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑥) ∈ 𝑥)) |
31 | 30 | ralbiia 3081 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥) |
32 | 12, 31 | sylibr 224 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥) |
33 | 21, 32 | jca 555 |
. . 3
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
34 | | feq1 6139 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (𝑓:𝐴⟶∪ 𝐴 ↔ (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴)) |
35 | | fveq1 6303 |
. . . . . . 7
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (𝑓‘𝑥) = ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥)) |
36 | 35 | eleq1d 2788 |
. . . . . 6
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → ((𝑓‘𝑥) ∈ 𝑥 ↔ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
37 | 36 | ralbidv 3088 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
38 | 34, 37 | anbi12d 749 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → ((𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥))) |
39 | 38 | spcegv 3398 |
. . 3
⊢ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) ∈ V → (((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥))) |
40 | 26, 33, 39 | sylc 65 |
. 2
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
41 | 5, 40 | exlimddv 1976 |
1
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |