MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6 Structured version   Visualization version   GIF version

Theorem ac6 9901
Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set 𝐵, where 𝜑 depends on 𝑥 (the natural number) and 𝑦 (to specify a member of 𝐵). A stronger version of this theorem, ac6s 9905, allows 𝐵 to be a proper class. (Contributed by NM, 18-Oct-1999.) (Revised by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ac6.1 𝐴 ∈ V
ac6.2 𝐵 ∈ V
ac6.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6
StepHypRef Expression
1 ac6.1 . 2 𝐴 ∈ V
2 ac6.2 . . . 4 𝐵 ∈ V
3 ssrab2 4055 . . . . . 6 {𝑦𝐵𝜑} ⊆ 𝐵
43rgenw 3150 . . . . 5 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
5 iunss 4968 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵)
64, 5mpbir 233 . . . 4 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
72, 6ssexi 5225 . . 3 𝑥𝐴 {𝑦𝐵𝜑} ∈ V
8 numth3 9891 . . 3 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
97, 8ax-mp 5 . 2 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
10 ac6.3 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
1110ac6num 9900 . 2 ((𝐴 ∈ V ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
121, 9, 11mp3an12 1447 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935   ciun 4918  dom cdm 5554  wf 6350  cfv 6354  cardccrd 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-ac2 9884
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-wrecs 7946  df-recs 8007  df-en 8509  df-card 9367  df-ac 9541
This theorem is referenced by:  ac6c4  9902  ac6s  9905  wlkiswwlksupgr2  27654
  Copyright terms: Public domain W3C validator