![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6 | Structured version Visualization version GIF version |
Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set 𝐵, where 𝜑 depends on 𝑥 (the natural number) and 𝑦 (to specify a member of 𝐵). A stronger version of this theorem, ac6s 9496, allows 𝐵 to be a proper class. (Contributed by NM, 18-Oct-1999.) (Revised by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
ac6.1 | ⊢ 𝐴 ∈ V |
ac6.2 | ⊢ 𝐵 ∈ V |
ac6.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ac6.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | ssrab2 3826 | . . . . . 6 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵 | |
4 | 3 | rgenw 3060 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵 |
5 | iunss 4711 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵) | |
6 | 4, 5 | mpbir 221 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵 |
7 | 2, 6 | ssexi 4953 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V |
8 | numth3 9482 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card |
10 | ac6.3 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
11 | 10 | ac6num 9491 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
12 | 1, 9, 11 | mp3an12 1561 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∃wex 1851 ∈ wcel 2137 ∀wral 3048 ∃wrex 3049 {crab 3052 Vcvv 3338 ⊆ wss 3713 ∪ ciun 4670 dom cdm 5264 ⟶wf 6043 ‘cfv 6047 cardccrd 8949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-ac2 9475 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-se 5224 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-isom 6056 df-riota 6772 df-wrecs 7574 df-recs 7635 df-en 8120 df-card 8953 df-ac 9127 |
This theorem is referenced by: ac6c4 9493 ac6s 9496 wlkiswwlksupgr2 26984 |
Copyright terms: Public domain | W3C validator |