MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Visualization version   GIF version

Theorem ac6c4 9891
Description: Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac6c4 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6c4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1906 . . . 4 𝑧 𝐵 ≠ ∅
2 nfcsb1v 3904 . . . . 5 𝑥𝑧 / 𝑥𝐵
3 nfcv 2974 . . . . 5 𝑥
42, 3nfne 3116 . . . 4 𝑥𝑧 / 𝑥𝐵 ≠ ∅
5 csbeq1a 3894 . . . . 5 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65neeq1d 3072 . . . 4 (𝑥 = 𝑧 → (𝐵 ≠ ∅ ↔ 𝑧 / 𝑥𝐵 ≠ ∅))
71, 4, 6cbvralw 3439 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ ∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅)
8 n0 4307 . . . . 5 (𝑧 / 𝑥𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝑧 / 𝑥𝐵)
9 nfv 1906 . . . . . 6 𝑦 𝑧𝐴
10 nfre1 3303 . . . . . 6 𝑦𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵
112nfel2 2993 . . . . . . . . . 10 𝑥 𝑦𝑧 / 𝑥𝐵
125eleq2d 2895 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝑧 / 𝑥𝐵))
1311, 12rspce 3609 . . . . . . . . 9 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑥𝐴 𝑦𝐵)
14 eliun 4914 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1513, 14sylibr 235 . . . . . . . 8 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → 𝑦 𝑥𝐴 𝐵)
16 rspe 3301 . . . . . . . 8 ((𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1715, 16sylancom 588 . . . . . . 7 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1817ex 413 . . . . . 6 (𝑧𝐴 → (𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
199, 10, 18exlimd 2208 . . . . 5 (𝑧𝐴 → (∃𝑦 𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
208, 19syl5bi 243 . . . 4 (𝑧𝐴 → (𝑧 / 𝑥𝐵 ≠ ∅ → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
2120ralimia 3155 . . 3 (∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
227, 21sylbi 218 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
23 ac6c4.1 . . 3 𝐴 ∈ V
24 ac6c4.2 . . . 4 𝐵 ∈ V
2523, 24iunex 7658 . . 3 𝑥𝐴 𝐵 ∈ V
26 eleq1 2897 . . 3 (𝑦 = (𝑓𝑧) → (𝑦𝑧 / 𝑥𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
2723, 25, 26ac6 9890 . 2 (∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵 → ∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
28 ffn 6507 . . . 4 (𝑓:𝐴 𝑥𝐴 𝐵𝑓 Fn 𝐴)
29 nfv 1906 . . . . . 6 𝑧(𝑓𝑥) ∈ 𝐵
302nfel2 2993 . . . . . 6 𝑥(𝑓𝑧) ∈ 𝑧 / 𝑥𝐵
31 fveq2 6663 . . . . . . 7 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
3231, 5eleq12d 2904 . . . . . 6 (𝑥 = 𝑧 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
3329, 30, 32cbvralw 3439 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵)
3433biimpri 229 . . . 4 (∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
3528, 34anim12i 612 . . 3 ((𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3635eximi 1826 . 2 (∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3722, 27, 363syl 18 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  csb 3880  c0 4288   ciun 4910   Fn wfn 6343  wf 6344  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-ac2 9873
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-wrecs 7936  df-recs 7997  df-en 8498  df-card 9356  df-ac 9530
This theorem is referenced by:  ac6c5  9892  ac9  9893
  Copyright terms: Public domain W3C validator