MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6n Structured version   Visualization version   GIF version

Theorem ac6n 9259
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 9258. (Contributed by NM, 10-Jun-2007.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6n (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6n
StepHypRef Expression
1 ac6s.1 . . . 4 𝐴 ∈ V
2 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
32notbid 308 . . . 4 (𝑦 = (𝑓𝑥) → (¬ 𝜑 ↔ ¬ 𝜓))
41, 3ac6s 9258 . . 3 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
54con3i 150 . 2 (¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓) → ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
6 dfrex2 2991 . . . . 5 (∃𝑥𝐴 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓)
76imbi2i 326 . . . 4 ((𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ (𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
87albii 1744 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
9 alinexa 1767 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
108, 9bitri 264 . 2 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
11 dfral2 2989 . . . 4 (∀𝑦𝐵 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜑)
1211rexbii 3035 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑)
13 rexnal 2990 . . 3 (∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
1412, 13bitri 264 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
155, 10, 143imtr4i 281 1 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  wf 5848  cfv 5852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-reg 8449  ax-inf2 8490  ax-ac2 9237
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-en 7908  df-r1 8579  df-rank 8580  df-card 8717  df-ac 8891
This theorem is referenced by:  nmobndseqiALT  27505
  Copyright terms: Public domain W3C validator