MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s3 Structured version   Visualization version   GIF version

Theorem ac6s3 9169
Description: Generalization of the Axiom of Choice to classes. Theorem 10.46 of [TakeutiZaring] p. 97. (Contributed by NM, 3-Nov-2004.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s3 (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s3
StepHypRef Expression
1 ac6s.1 . . 3 𝐴 ∈ V
2 ac6s.2 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
31, 2ac6s2 9168 . 2 (∀𝑥𝐴𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
4 exsimpr 1783 . 2 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓) → ∃𝑓𝑥𝐴 𝜓)
53, 4syl 17 1 (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  wral 2895  Vcvv 3172   Fn wfn 5785  cfv 5790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-reg 8357  ax-inf2 8398  ax-ac2 9145
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-en 7819  df-r1 8487  df-rank 8488  df-card 8625  df-ac 8799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator