MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s5 Structured version   Visualization version   GIF version

Theorem ac6s5 9169
Description: Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. Remark after Theorem 10.46 of [TakeutiZaring] p. 98. (Contributed by NM, 27-Mar-2006.)
Hypothesis
Ref Expression
ac6s4.1 𝐴 ∈ V
Assertion
Ref Expression
ac6s5 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6s5
StepHypRef Expression
1 ac6s4.1 . . 3 𝐴 ∈ V
21ac6s4 9168 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3 exsimpr 1782 . 2 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
42, 3syl 17 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wex 1694  wcel 1975  wne 2775  wral 2891  Vcvv 3168  c0 3869   Fn wfn 5781  cfv 5786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-reg 8353  ax-inf2 8394  ax-ac2 9141
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-om 6931  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-en 7815  df-r1 8483  df-rank 8484  df-card 8621  df-ac 8795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator