Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s6f Structured version   Visualization version   GIF version

Theorem ac6s6f 34111
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.)
Hypotheses
Ref Expression
ac6s6f.1 𝐴 ∈ V
ac6s6f.2 𝑦𝜓
ac6s6f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
ac6s6f.4 𝑥𝐴
Assertion
Ref Expression
ac6s6f 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑥,𝑦)

Proof of Theorem ac6s6f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s6f.1 . . . . . 6 𝐴 ∈ V
21isseti 3240 . . . . 5 𝑧 𝑧 = 𝐴
3 ac6s6f.2 . . . . . 6 𝑦𝜓
4 vex 3234 . . . . . 6 𝑧 ∈ V
5 ac6s6f.3 . . . . . 6 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
63, 4, 5ac6s6 34110 . . . . 5 𝑓𝑥𝑧 (∃𝑦𝜑𝜓)
72, 6pm3.2i 470 . . . 4 (∃𝑧 𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓))
87exan 1828 . . 3 𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓))
9 exdistr 1922 . . 3 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓)))
108, 9mpbir 221 . 2 𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓))
11 nfcv 2793 . . . . 5 𝑥𝑧
12 ac6s6f.4 . . . . 5 𝑥𝐴
1311, 12raleqf 3164 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 (∃𝑦𝜑𝜓) ↔ ∀𝑥𝐴 (∃𝑦𝜑𝜓)))
1413biimpa 500 . . 3 ((𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∀𝑥𝐴 (∃𝑦𝜑𝜓))
15142eximi 1803 . 2 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
16 ax5e 1881 . 2 (∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓) → ∃𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
1710, 15, 16mp2b 10 1 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wnf 1748  wcel 2030  wnfc 2780  wral 2941  Vcvv 3231  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576  ax-ac2 9323
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-en 7998  df-r1 8665  df-rank 8666  df-card 8803  df-ac 8977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator