MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac7g Structured version   Visualization version   GIF version

Theorem ac7g 9890
Description: An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
ac7g (𝑅𝐴 → ∃𝑓(𝑓𝑅𝑓 Fn dom 𝑅))
Distinct variable group:   𝑅,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem ac7g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3992 . . . 4 (𝑥 = 𝑅 → (𝑓𝑥𝑓𝑅))
2 dmeq 5766 . . . . 5 (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅)
32fneq2d 6441 . . . 4 (𝑥 = 𝑅 → (𝑓 Fn dom 𝑥𝑓 Fn dom 𝑅))
41, 3anbi12d 632 . . 3 (𝑥 = 𝑅 → ((𝑓𝑥𝑓 Fn dom 𝑥) ↔ (𝑓𝑅𝑓 Fn dom 𝑅)))
54exbidv 1918 . 2 (𝑥 = 𝑅 → (∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥) ↔ ∃𝑓(𝑓𝑅𝑓 Fn dom 𝑅)))
6 ac7 9889 . 2 𝑓(𝑓𝑥𝑓 Fn dom 𝑥)
75, 6vtoclg 3567 1 (𝑅𝐴 → ∃𝑓(𝑓𝑅𝑓 Fn dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wex 1776  wcel 2110  wss 3935  dom cdm 5549   Fn wfn 6344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-ac2 9879
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ac 9536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator