MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac9 Structured version   Visualization version   GIF version

Theorem ac9 9166
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac9 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac9
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ac6c4.1 . . . 4 𝐴 ∈ V
2 ac6c4.2 . . . 4 𝐵 ∈ V
31, 2ac6c4 9164 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
4 n0 3889 . . . 4 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
5 vex 3175 . . . . . 6 𝑓 ∈ V
65elixp 7779 . . . . 5 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
76exbii 1763 . . . 4 (∃𝑓 𝑓X𝑥𝐴 𝐵 ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
84, 7bitr2i 263 . . 3 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ X𝑥𝐴 𝐵 ≠ ∅)
93, 8sylib 206 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → X𝑥𝐴 𝐵 ≠ ∅)
10 ixpn0 7804 . 2 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
119, 10impbii 197 1 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  wex 1694  wcel 1976  wne 2779  wral 2895  Vcvv 3172  c0 3873   Fn wfn 5785  cfv 5790  Xcixp 7772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-ac2 9146
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-wrecs 7272  df-recs 7333  df-ixp 7773  df-en 7820  df-card 8626  df-ac 8800
This theorem is referenced by:  konigthlem  9247
  Copyright terms: Public domain W3C validator