Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq0 Structured version   Visualization version   GIF version

Theorem aceq0 9123
 Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. The right-hand side is our original ax-ac 9465. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
aceq0 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡

Proof of Theorem aceq0
StepHypRef Expression
1 aceq1 9122 . 2 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2 equequ2 2100 . . . . . . . . . 10 (𝑣 = 𝑥 → (𝑢 = 𝑣𝑢 = 𝑥))
32bibi2d 331 . . . . . . . . 9 (𝑣 = 𝑥 → ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑥)))
4 elequ2 2145 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑤𝑡𝑤𝑥))
54anbi2d 742 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ((𝑢𝑤𝑤𝑡) ↔ (𝑢𝑤𝑤𝑥)))
6 elequ2 2145 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑢𝑡𝑢𝑥))
7 elequ1 2138 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑡𝑦𝑥𝑦))
86, 7anbi12d 749 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ((𝑢𝑡𝑡𝑦) ↔ (𝑢𝑥𝑥𝑦)))
95, 8anbi12d 749 . . . . . . . . . . 11 (𝑡 = 𝑥 → (((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ ((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦))))
109cbvexv 2412 . . . . . . . . . 10 (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ ∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)))
1110bibi1i 327 . . . . . . . . 9 ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥))
123, 11syl6bb 276 . . . . . . . 8 (𝑣 = 𝑥 → ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥)))
1312albidv 1990 . . . . . . 7 (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑢(∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥)))
14 elequ1 2138 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢𝑤𝑧𝑤))
1514anbi1d 743 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢𝑤𝑤𝑥) ↔ (𝑧𝑤𝑤𝑥)))
16 elequ1 2138 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢𝑥𝑧𝑥))
1716anbi1d 743 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢𝑥𝑥𝑦) ↔ (𝑧𝑥𝑥𝑦)))
1815, 17anbi12d 749 . . . . . . . . . 10 (𝑢 = 𝑧 → (((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ ((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦))))
1918exbidv 1991 . . . . . . . . 9 (𝑢 = 𝑧 → (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ ∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦))))
20 equequ1 2099 . . . . . . . . 9 (𝑢 = 𝑧 → (𝑢 = 𝑥𝑧 = 𝑥))
2119, 20bibi12d 334 . . . . . . . 8 (𝑢 = 𝑧 → ((∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2221cbvalv 2410 . . . . . . 7 (∀𝑢(∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥) ↔ ∀𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
2313, 22syl6bb 276 . . . . . 6 (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2423cbvexv 2412 . . . . 5 (∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
2524imbi2i 325 . . . 4 (((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
26252albii 1889 . . 3 (∀𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∀𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2726exbii 1915 . 2 (∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
281, 27bitr4i 267 1 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1622  ∃wex 1845  ∀wral 3042  ∃wrex 3043  ∃!wreu 3044 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-reu 3049 This theorem is referenced by:  dfac0  9139  ac2  9467
 Copyright terms: Public domain W3C validator