MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem11 Structured version   Visualization version   GIF version

Theorem ackbij1lem11 9654
Description: Lemma for ackbij1 9662. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem11 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem11
StepHypRef Expression
1 ssexg 5229 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ V)
2 elinel1 4174 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
32elpwid 4552 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
4 sstr 3977 . . . . 5 ((𝐵𝐴𝐴 ⊆ ω) → 𝐵 ⊆ ω)
53, 4sylan2 594 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω)
61, 5elpwd 4549 . . 3 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ 𝒫 ω)
76ancoms 461 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ 𝒫 ω)
8 elinel2 4175 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
9 ssfi 8740 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
108, 9sylan 582 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
117, 10elind 4173 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541  {csn 4569   ciun 4921  cmpt 5148   × cxp 5555  cfv 6357  ωcom 7582  Fincfn 8511  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-om 7583  df-er 8291  df-en 8512  df-fin 8515
This theorem is referenced by:  ackbij1lem12  9655  ackbij1lem15  9658  ackbij1lem16  9659  ackbij1lem18  9661
  Copyright terms: Public domain W3C validator