MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem16 Structured version   Visualization version   GIF version

Theorem ackbij1lem16 9095
Description: Lemma for ackbij1 9098. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem16 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem16
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3866 . . . . . . . . 9 (𝒫 ω ∩ Fin) ⊆ 𝒫 ω
21sseli 3632 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
32elpwid 4203 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
43adantr 480 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐴 ⊆ ω)
51sseli 3632 . . . . . . . 8 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
65elpwid 4203 . . . . . . 7 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ⊆ ω)
76adantl 481 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω)
84, 7unssd 3822 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ ω)
9 inss2 3867 . . . . . . 7 (𝒫 ω ∩ Fin) ⊆ Fin
109sseli 3632 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
119sseli 3632 . . . . . 6 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
12 unfi 8268 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
1310, 11, 12syl2an 493 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ Fin)
14 nnunifi 8252 . . . . 5 (((𝐴𝐵) ⊆ ω ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ ω)
158, 13, 14syl2anc 694 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ ω)
16 peano2 7128 . . . 4 ( (𝐴𝐵) ∈ ω → suc (𝐴𝐵) ∈ ω)
1715, 16syl 17 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → suc (𝐴𝐵) ∈ ω)
18 ineq2 3841 . . . . . . . 8 (𝑎 = ∅ → (𝐴𝑎) = (𝐴 ∩ ∅))
1918fveq2d 6233 . . . . . . 7 (𝑎 = ∅ → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ ∅)))
20 ineq2 3841 . . . . . . . 8 (𝑎 = ∅ → (𝐵𝑎) = (𝐵 ∩ ∅))
2120fveq2d 6233 . . . . . . 7 (𝑎 = ∅ → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ ∅)))
2219, 21eqeq12d 2666 . . . . . 6 (𝑎 = ∅ → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅))))
2318, 20eqeq12d 2666 . . . . . 6 (𝑎 = ∅ → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))
2422, 23imbi12d 333 . . . . 5 (𝑎 = ∅ → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅))))
2524imbi2d 329 . . . 4 (𝑎 = ∅ → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))))
26 ineq2 3841 . . . . . . . 8 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
2726fveq2d 6233 . . . . . . 7 (𝑎 = 𝑏 → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴𝑏)))
28 ineq2 3841 . . . . . . . 8 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
2928fveq2d 6233 . . . . . . 7 (𝑎 = 𝑏 → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵𝑏)))
3027, 29eqeq12d 2666 . . . . . 6 (𝑎 = 𝑏 → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
3126, 28eqeq12d 2666 . . . . . 6 (𝑎 = 𝑏 → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴𝑏) = (𝐵𝑏)))
3230, 31imbi12d 333 . . . . 5 (𝑎 = 𝑏 → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏))))
3332imbi2d 329 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)))))
34 ineq2 3841 . . . . . . . 8 (𝑎 = suc 𝑏 → (𝐴𝑎) = (𝐴 ∩ suc 𝑏))
3534fveq2d 6233 . . . . . . 7 (𝑎 = suc 𝑏 → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
36 ineq2 3841 . . . . . . . 8 (𝑎 = suc 𝑏 → (𝐵𝑎) = (𝐵 ∩ suc 𝑏))
3736fveq2d 6233 . . . . . . 7 (𝑎 = suc 𝑏 → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
3835, 37eqeq12d 2666 . . . . . 6 (𝑎 = suc 𝑏 → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))))
3934, 36eqeq12d 2666 . . . . . 6 (𝑎 = suc 𝑏 → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
4038, 39imbi12d 333 . . . . 5 (𝑎 = suc 𝑏 → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
4140imbi2d 329 . . . 4 (𝑎 = suc 𝑏 → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
42 ineq2 3841 . . . . . . . 8 (𝑎 = suc (𝐴𝐵) → (𝐴𝑎) = (𝐴 ∩ suc (𝐴𝐵)))
4342fveq2d 6233 . . . . . . 7 (𝑎 = suc (𝐴𝐵) → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ suc (𝐴𝐵))))
44 ineq2 3841 . . . . . . . 8 (𝑎 = suc (𝐴𝐵) → (𝐵𝑎) = (𝐵 ∩ suc (𝐴𝐵)))
4544fveq2d 6233 . . . . . . 7 (𝑎 = suc (𝐴𝐵) → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))))
4643, 45eqeq12d 2666 . . . . . 6 (𝑎 = suc (𝐴𝐵) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵)))))
4742, 44eqeq12d 2666 . . . . . 6 (𝑎 = suc (𝐴𝐵) → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))
4846, 47imbi12d 333 . . . . 5 (𝑎 = suc (𝐴𝐵) → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)))))
4948imbi2d 329 . . . 4 (𝑎 = suc (𝐴𝐵) → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))))
50 in0 4001 . . . . . 6 (𝐴 ∩ ∅) = ∅
51 in0 4001 . . . . . 6 (𝐵 ∩ ∅) = ∅
5250, 51eqtr4i 2676 . . . . 5 (𝐴 ∩ ∅) = (𝐵 ∩ ∅)
53522a1i 12 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))
54 simp13 1113 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
55 3simpa 1078 . . . . . . . . . . . . . 14 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))))
56 ackbij1lem2 9081 . . . . . . . . . . . . . . . . 17 (𝑏𝐴 → (𝐴 ∩ suc 𝑏) = ({𝑏} ∪ (𝐴𝑏)))
5756fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑏𝐴 → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐴𝑏))))
58573ad2ant2 1103 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐴𝑏))))
59 ackbij1lem4 9083 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ω → {𝑏} ∈ (𝒫 ω ∩ Fin))
6059adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → {𝑏} ∈ (𝒫 ω ∩ Fin))
61 simprl 809 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → 𝐴 ∈ (𝒫 ω ∩ Fin))
62 inss1 3866 . . . . . . . . . . . . . . . . . 18 (𝐴𝑏) ⊆ 𝐴
63 ackbij.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
6463ackbij1lem11 9090 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝑏) ⊆ 𝐴) → (𝐴𝑏) ∈ (𝒫 ω ∩ Fin))
6561, 62, 64sylancl 695 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐴𝑏) ∈ (𝒫 ω ∩ Fin))
66 incom 3838 . . . . . . . . . . . . . . . . . 18 ({𝑏} ∩ (𝐴𝑏)) = ((𝐴𝑏) ∩ {𝑏})
67 inss2 3867 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑏) ⊆ 𝑏
68 nnord 7115 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ ω → Ord 𝑏)
69 orddisj 5800 . . . . . . . . . . . . . . . . . . . . 21 (Ord 𝑏 → (𝑏 ∩ {𝑏}) = ∅)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ω → (𝑏 ∩ {𝑏}) = ∅)
7170adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝑏 ∩ {𝑏}) = ∅)
72 ssdisj 4059 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑏) ⊆ 𝑏 ∧ (𝑏 ∩ {𝑏}) = ∅) → ((𝐴𝑏) ∩ {𝑏}) = ∅)
7367, 71, 72sylancr 696 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ((𝐴𝑏) ∩ {𝑏}) = ∅)
7466, 73syl5eq 2697 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ({𝑏} ∩ (𝐴𝑏)) = ∅)
7563ackbij1lem9 9088 . . . . . . . . . . . . . . . . 17 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝑏) ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ (𝐴𝑏)) = ∅) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
7660, 65, 74, 75syl3anc 1366 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
77763ad2ant1 1102 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
7858, 77eqtrd 2685 . . . . . . . . . . . . . 14 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
7955, 78syl3an1 1399 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
80 ackbij1lem2 9081 . . . . . . . . . . . . . . . . 17 (𝑏𝐵 → (𝐵 ∩ suc 𝑏) = ({𝑏} ∪ (𝐵𝑏)))
8180fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑏𝐵 → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐵𝑏))))
82813ad2ant3 1104 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐵𝑏))))
83 simprr 811 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → 𝐵 ∈ (𝒫 ω ∩ Fin))
84 inss1 3866 . . . . . . . . . . . . . . . . . 18 (𝐵𝑏) ⊆ 𝐵
8563ackbij1lem11 9090 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝑏) ⊆ 𝐵) → (𝐵𝑏) ∈ (𝒫 ω ∩ Fin))
8683, 84, 85sylancl 695 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐵𝑏) ∈ (𝒫 ω ∩ Fin))
87 incom 3838 . . . . . . . . . . . . . . . . . 18 ({𝑏} ∩ (𝐵𝑏)) = ((𝐵𝑏) ∩ {𝑏})
88 inss2 3867 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑏) ⊆ 𝑏
89 ssdisj 4059 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑏) ⊆ 𝑏 ∧ (𝑏 ∩ {𝑏}) = ∅) → ((𝐵𝑏) ∩ {𝑏}) = ∅)
9088, 71, 89sylancr 696 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ((𝐵𝑏) ∩ {𝑏}) = ∅)
9187, 90syl5eq 2697 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ({𝑏} ∩ (𝐵𝑏)) = ∅)
9263ackbij1lem9 9088 . . . . . . . . . . . . . . . . 17 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝑏) ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ (𝐵𝑏)) = ∅) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9360, 86, 91, 92syl3anc 1366 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
94933ad2ant1 1102 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9582, 94eqtrd 2685 . . . . . . . . . . . . . 14 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9655, 95syl3an1 1399 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9754, 79, 963eqtr3d 2693 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9863ackbij1lem10 9089 . . . . . . . . . . . . . . . . 17 𝐹:(𝒫 ω ∩ Fin)⟶ω
9998ffvelrni 6398 . . . . . . . . . . . . . . . 16 ({𝑏} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑏}) ∈ ω)
10060, 99syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘{𝑏}) ∈ ω)
10198ffvelrni 6398 . . . . . . . . . . . . . . . 16 ((𝐴𝑏) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴𝑏)) ∈ ω)
10265, 101syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘(𝐴𝑏)) ∈ ω)
10398ffvelrni 6398 . . . . . . . . . . . . . . . 16 ((𝐵𝑏) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐵𝑏)) ∈ ω)
10486, 103syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘(𝐵𝑏)) ∈ ω)
105 nnacan 7753 . . . . . . . . . . . . . . 15 (((𝐹‘{𝑏}) ∈ ω ∧ (𝐹‘(𝐴𝑏)) ∈ ω ∧ (𝐹‘(𝐵𝑏)) ∈ ω) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
106100, 102, 104, 105syl3anc 1366 . . . . . . . . . . . . . 14 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1071063adant3 1101 . . . . . . . . . . . . 13 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1081073ad2ant1 1102 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
10997, 108mpbid 222 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)))
110 uneq2 3794 . . . . . . . . . . . . . . 15 ((𝐴𝑏) = (𝐵𝑏) → ({𝑏} ∪ (𝐴𝑏)) = ({𝑏} ∪ (𝐵𝑏)))
111110adantl 481 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → ({𝑏} ∪ (𝐴𝑏)) = ({𝑏} ∪ (𝐵𝑏)))
11256ad2antrr 762 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = ({𝑏} ∪ (𝐴𝑏)))
11380ad2antlr 763 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐵 ∩ suc 𝑏) = ({𝑏} ∪ (𝐵𝑏)))
114111, 112, 1133eqtr4d 2695 . . . . . . . . . . . . 13 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))
115114ex 449 . . . . . . . . . . . 12 ((𝑏𝐴𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1161153adant1 1099 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
117109, 116embantd 59 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1181173exp 1283 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐴 → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
119 simp13 1113 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
120119eqcomd 2657 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
121 simp12r 1195 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝐵 ∈ (𝒫 ω ∩ Fin))
122 simp12l 1194 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
123 simp11 1111 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝑏 ∈ ω)
124 simp3 1083 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝑏𝐵)
125 simp2 1082 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → ¬ 𝑏𝐴)
12663ackbij1lem15 9094 . . . . . . . . . . . 12 (((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑏 ∈ ω ∧ 𝑏𝐵 ∧ ¬ 𝑏𝐴)) → ¬ (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
127121, 122, 123, 124, 125, 126syl23anc 1373 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → ¬ (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
128120, 127pm2.21dd 186 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1291283exp 1283 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐴 → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
130118, 129pm2.61d 170 . . . . . . . 8 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
131 simp13 1113 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
132 simp12l 1194 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
133 simp12r 1195 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝐵 ∈ (𝒫 ω ∩ Fin))
134 simp11 1111 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝑏 ∈ ω)
135 simp2 1082 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝑏𝐴)
136 simp3 1083 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ¬ 𝑏𝐵)
13763ackbij1lem15 9094 . . . . . . . . . . . 12 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑏 ∈ ω ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
138132, 133, 134, 135, 136, 137syl23anc 1373 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ¬ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
139131, 138pm2.21dd 186 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1401393exp 1283 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐴 → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
141 simp13 1113 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
142 ackbij1lem1 9080 . . . . . . . . . . . . . . . . 17 𝑏𝐴 → (𝐴 ∩ suc 𝑏) = (𝐴𝑏))
143142adantr 480 . . . . . . . . . . . . . . . 16 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐴 ∩ suc 𝑏) = (𝐴𝑏))
144143fveq2d 6233 . . . . . . . . . . . . . . 15 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐴𝑏)))
145 ackbij1lem1 9080 . . . . . . . . . . . . . . . . 17 𝑏𝐵 → (𝐵 ∩ suc 𝑏) = (𝐵𝑏))
146145adantl 481 . . . . . . . . . . . . . . . 16 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐵 ∩ suc 𝑏) = (𝐵𝑏))
147146fveq2d 6233 . . . . . . . . . . . . . . 15 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐵𝑏)))
148144, 147eqeq12d 2666 . . . . . . . . . . . . . 14 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
149148biimpd 219 . . . . . . . . . . . . 13 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1501493adant1 1099 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
151141, 150mpd 15 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)))
152143, 146eqeq12d 2666 . . . . . . . . . . . . 13 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏) ↔ (𝐴𝑏) = (𝐵𝑏)))
153152biimprd 238 . . . . . . . . . . . 12 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1541533adant1 1099 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
155151, 154embantd 59 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1561553exp 1283 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐴 → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
157140, 156pm2.61d 170 . . . . . . . 8 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
158130, 157pm2.61d 170 . . . . . . 7 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1591583exp 1283 . . . . . 6 (𝑏 ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
160159com34 91 . . . . 5 (𝑏 ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
161160a2d 29 . . . 4 (𝑏 ∈ ω → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏))) → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
16225, 33, 41, 49, 53, 161finds 7134 . . 3 (suc (𝐴𝐵) ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)))))
16317, 162mpcom 38 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))
164 omsson 7111 . . . . . . . 8 ω ⊆ On
1658, 164syl6ss 3648 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ On)
166 onsucuni 7070 . . . . . . 7 ((𝐴𝐵) ⊆ On → (𝐴𝐵) ⊆ suc (𝐴𝐵))
167165, 166syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ suc (𝐴𝐵))
168167unssad 3823 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐴 ⊆ suc (𝐴𝐵))
169 df-ss 3621 . . . . 5 (𝐴 ⊆ suc (𝐴𝐵) ↔ (𝐴 ∩ suc (𝐴𝐵)) = 𝐴)
170168, 169sylib 208 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∩ suc (𝐴𝐵)) = 𝐴)
171170fveq2d 6233 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹𝐴))
172167unssbd 3824 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ suc (𝐴𝐵))
173 df-ss 3621 . . . . 5 (𝐵 ⊆ suc (𝐴𝐵) ↔ (𝐵 ∩ suc (𝐴𝐵)) = 𝐵)
174172, 173sylib 208 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐵 ∩ suc (𝐴𝐵)) = 𝐵)
175174fveq2d 6233 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) = (𝐹𝐵))
176171, 175eqeq12d 2666 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) ↔ (𝐹𝐴) = (𝐹𝐵)))
177170, 174eqeq12d 2666 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)) ↔ 𝐴 = 𝐵))
178163, 176, 1773imtr3d 282 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  cun 3605  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cuni 4468   ciun 4552  cmpt 4762   × cxp 5141  Ord word 5760  Oncon0 5761  suc csuc 5763  cfv 5926  (class class class)co 6690  ωcom 7107   +𝑜 coa 7602  Fincfn 7997  cardccrd 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028
This theorem is referenced by:  ackbij1lem17  9096
  Copyright terms: Public domain W3C validator