MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem9 Structured version   Visualization version   GIF version

Theorem ackbij1lem9 9644
Description: Lemma for ackbij1 9654. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem9 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = ((𝐹𝐴) +o (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem9
StepHypRef Expression
1 elinel2 4173 . . . . . . . . 9 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
213ad2ant1 1129 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ Fin)
3 snfi 8588 . . . . . . . . . 10 {𝑦} ∈ Fin
4 elinel1 4172 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
54elpwid 4553 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
653ad2ant1 1129 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ ω)
7 onfin2 8704 . . . . . . . . . . . . . 14 ω = (On ∩ Fin)
8 inss2 4206 . . . . . . . . . . . . . 14 (On ∩ Fin) ⊆ Fin
97, 8eqsstri 4001 . . . . . . . . . . . . 13 ω ⊆ Fin
106, 9sstrdi 3979 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ Fin)
1110sselda 3967 . . . . . . . . . . 11 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
12 pwfi 8813 . . . . . . . . . . 11 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1311, 12sylib 220 . . . . . . . . . 10 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → 𝒫 𝑦 ∈ Fin)
14 xpfi 8783 . . . . . . . . . 10 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
153, 13, 14sylancr 589 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1615ralrimiva 3182 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ∀𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
17 iunfi 8806 . . . . . . . 8 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
182, 16, 17syl2anc 586 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
19 ficardid 9385 . . . . . . 7 ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
21 elinel2 4173 . . . . . . . . 9 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
22213ad2ant2 1130 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ Fin)
23 elinel1 4172 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
2423elpwid 4553 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ⊆ ω)
25243ad2ant2 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ ω)
2625, 9sstrdi 3979 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ Fin)
2726sselda 3967 . . . . . . . . . . 11 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → 𝑦 ∈ Fin)
2827, 12sylib 220 . . . . . . . . . 10 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → 𝒫 𝑦 ∈ Fin)
293, 28, 14sylancr 589 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
3029ralrimiva 3182 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ∀𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
31 iunfi 8806 . . . . . . . 8 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
3222, 30, 31syl2anc 586 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
33 ficardid 9385 . . . . . . 7 ( 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
35 djuen 9589 . . . . . 6 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∧ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
3620, 34, 35syl2anc 586 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
37 djudisj 6019 . . . . . . . 8 ((𝐴𝐵) = ∅ → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅)
38373ad2ant3 1131 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅)
39 endjudisj 9588 . . . . . . 7 (( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
4018, 32, 38, 39syl3anc 1367 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
41 iunxun 5009 . . . . . 6 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦) = ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
4240, 41breqtrrdi 5101 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
43 entr 8555 . . . . 5 ((((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∧ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
4436, 42, 43syl2anc 586 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
45 carden2b 9390 . . . 4 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
4644, 45syl 17 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
47 ficardom 9384 . . . . 5 ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω)
4818, 47syl 17 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω)
49 ficardom 9384 . . . . 5 ( 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω)
5032, 49syl 17 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω)
51 nnadju 9617 . . . 4 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω ∧ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
5248, 50, 51syl2anc 586 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
5346, 52eqtr3d 2858 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
54 ackbij1lem6 9641 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
55543adant3 1128 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
56 ackbij.f . . . 4 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
5756ackbij1lem7 9642 . . 3 ((𝐴𝐵) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴𝐵)) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
5855, 57syl 17 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
5956ackbij1lem7 9642 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
6056ackbij1lem7 9642 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐵) = (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
6159, 60oveqan12d 7169 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) +o (𝐹𝐵)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
62613adant3 1128 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((𝐹𝐴) +o (𝐹𝐵)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
6353, 58, 623eqtr4d 2866 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = ((𝐹𝐴) +o (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4561   ciun 4912   class class class wbr 5059  cmpt 5139   × cxp 5548  Oncon0 6186  cfv 6350  (class class class)co 7150  ωcom 7574   +o coa 8093  cen 8500  Fincfn 8503  cdju 9321  cardccrd 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362
This theorem is referenced by:  ackbij1lem12  9647  ackbij1lem13  9648  ackbij1lem14  9649  ackbij1lem16  9651  ackbij1lem18  9653
  Copyright terms: Public domain W3C validator