MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acncc Structured version   Visualization version   GIF version

Theorem acncc 9247
Description: An ax-cc 9242 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acncc AC ω = V

Proof of Theorem acncc
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3198 . . . . 5 𝑥 ∈ V
2 omex 8525 . . . . 5 ω ∈ V
3 isacn 8852 . . . . 5 ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
41, 2, 3mp2an 707 . . . 4 (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
5 axcc2 9244 . . . . 5 𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
6 elmapi 7864 . . . . . . . . . 10 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅}))
7 ffvelrn 6343 . . . . . . . . . . 11 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
8 eldifsni 4311 . . . . . . . . . . 11 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
97, 8syl 17 . . . . . . . . . 10 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
106, 9sylan 488 . . . . . . . . 9 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
11 id 22 . . . . . . . . 9 (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
1210, 11syl5com 31 . . . . . . . 8 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω) ∧ 𝑦 ∈ ω) → (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → (𝑔𝑦) ∈ (𝑓𝑦)))
1312ralimdva 2959 . . . . . . 7 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω) → (∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1413adantld 483 . . . . . 6 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1514eximdv 1844 . . . . 5 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
165, 15mpi 20 . . . 4 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 ω) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
174, 16mprgbir 2924 . . 3 𝑥AC ω
1817, 12th 254 . 2 (𝑥AC ω ↔ 𝑥 ∈ V)
1918eqriv 2617 1 AC ω = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wex 1702  wcel 1988  wne 2791  wral 2909  Vcvv 3195  cdif 3564  c0 3907  𝒫 cpw 4149  {csn 4168   Fn wfn 5871  wf 5872  cfv 5876  (class class class)co 6635  ωcom 7050  𝑚 cmap 7842  AC wacn 8749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-er 7727  df-map 7844  df-en 7941  df-acn 8753
This theorem is referenced by:  iunctb  9381
  Copyright terms: Public domain W3C validator