MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom2 Structured version   Visualization version   GIF version

Theorem acndom2 8821
Description: A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom2 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))

Proof of Theorem acndom2
Dummy variables 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 7910 . 2 (𝑋𝑌 → ∃𝑓 𝑓:𝑋1-1𝑌)
2 simplr 791 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑌AC 𝐴)
3 imassrn 5436 . . . . . . . . . . 11 (𝑓 “ (𝑔𝑥)) ⊆ ran 𝑓
4 simplll 797 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑓:𝑋1-1𝑌)
5 f1f 6058 . . . . . . . . . . . 12 (𝑓:𝑋1-1𝑌𝑓:𝑋𝑌)
6 frn 6010 . . . . . . . . . . . 12 (𝑓:𝑋𝑌 → ran 𝑓𝑌)
74, 5, 63syl 18 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ran 𝑓𝑌)
83, 7syl5ss 3594 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ⊆ 𝑌)
9 elmapi 7823 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
109adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
1110ffvelrnda 6315 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}))
1211eldifad 3567 . . . . . . . . . . . . . . 15 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 𝒫 𝑋)
1312elpwid 4141 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ 𝑋)
14 f1dm 6062 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌 → dom 𝑓 = 𝑋)
154, 14syl 17 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → dom 𝑓 = 𝑋)
1613, 15sseqtr4d 3621 . . . . . . . . . . . . 13 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ dom 𝑓)
17 sseqin2 3795 . . . . . . . . . . . . 13 ((𝑔𝑥) ⊆ dom 𝑓 ↔ (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
1816, 17sylib 208 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
19 eldifsni 4289 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}) → (𝑔𝑥) ≠ ∅)
2011, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ≠ ∅)
2118, 20eqnetrd 2857 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
22 imadisj 5443 . . . . . . . . . . . 12 ((𝑓 “ (𝑔𝑥)) = ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) = ∅)
2322necon3bii 2842 . . . . . . . . . . 11 ((𝑓 “ (𝑔𝑥)) ≠ ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
2421, 23sylibr 224 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ≠ ∅)
258, 24jca 554 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
2625ralrimiva 2960 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
27 acni2 8813 . . . . . . . 8 ((𝑌AC 𝐴 ∧ ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
282, 26, 27syl2anc 692 . . . . . . 7 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
29 acnrcl 8809 . . . . . . . . 9 (𝑌AC 𝐴𝐴 ∈ V)
3029ad3antlr 766 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝐴 ∈ V)
31 simp-4l 805 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1𝑌)
32 f1f1orn 6105 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌𝑓:𝑋1-1-onto→ran 𝑓)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1-onto→ran 𝑓)
34 simprr 795 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))
353, 34sseldi 3581 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ ran 𝑓)
36 f1ocnvfv2 6487 . . . . . . . . . . . . . 14 ((𝑓:𝑋1-1-onto→ran 𝑓 ∧ (𝑘𝑥) ∈ ran 𝑓) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3733, 35, 36syl2anc 692 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3837, 34eqeltrd 2698 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)))
39 f1ocnv 6106 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝑋)
40 f1of 6094 . . . . . . . . . . . . . . 15 (𝑓:ran 𝑓1-1-onto𝑋𝑓:ran 𝑓𝑋)
4133, 39, 403syl 18 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:ran 𝑓𝑋)
4241, 35ffvelrnd 6316 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ 𝑋)
4313ad2ant2r 782 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑔𝑥) ⊆ 𝑋)
44 f1elima 6474 . . . . . . . . . . . . 13 ((𝑓:𝑋1-1𝑌 ∧ (𝑓‘(𝑘𝑥)) ∈ 𝑋 ∧ (𝑔𝑥) ⊆ 𝑋) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4531, 42, 43, 44syl3anc 1323 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4638, 45mpbid 222 . . . . . . . . . . 11 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
4746expr 642 . . . . . . . . . 10 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ 𝑥𝐴) → ((𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4847ralimdva 2956 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐴𝑌) → (∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4948impr 648 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
50 acnlem 8815 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5130, 49, 50syl2anc 692 . . . . . . 7 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5228, 51exlimddv 1860 . . . . . 6 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5352ralrimiva 2960 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
54 vex 3189 . . . . . . . 8 𝑓 ∈ V
5554dmex 7046 . . . . . . 7 dom 𝑓 ∈ V
5614, 55syl6eqelr 2707 . . . . . 6 (𝑓:𝑋1-1𝑌𝑋 ∈ V)
57 isacn 8811 . . . . . 6 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5856, 29, 57syl2an 494 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5953, 58mpbird 247 . . . 4 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → 𝑋AC 𝐴)
6059ex 450 . . 3 (𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
6160exlimiv 1855 . 2 (∃𝑓 𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
621, 61syl 17 1 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cdif 3552  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  ccnv 5073  dom cdm 5074  ran crn 5075  cima 5077  wf 5843  1-1wf1 5844  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  cdom 7897  AC wacn 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-map 7804  df-dom 7901  df-acn 8712
This theorem is referenced by:  acnen2  8822  dfac13  8908  iundomg  9307  iunctb  9340
  Copyright terms: Public domain W3C validator