MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni Structured version   Visualization version   GIF version

Theorem acni 9470
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥   𝑔,𝑋,𝑥

Proof of Theorem acni
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6668 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21eleq2d 2898 . . . 4 (𝑓 = 𝐹 → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ (𝑔𝑥) ∈ (𝐹𝑥)))
32ralbidv 3197 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
43exbidv 1918 . 2 (𝑓 = 𝐹 → (∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
5 acnrcl 9467 . . . . 5 (𝑋AC 𝐴𝐴 ∈ V)
6 isacn 9469 . . . . 5 ((𝑋AC 𝐴𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
75, 6mpdan 685 . . . 4 (𝑋AC 𝐴 → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
87ibi 269 . . 3 (𝑋AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
98adantr 483 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
10 pwexg 5278 . . . . 5 (𝑋AC 𝐴 → 𝒫 𝑋 ∈ V)
11 difexg 5230 . . . . 5 (𝒫 𝑋 ∈ V → (𝒫 𝑋 ∖ {∅}) ∈ V)
1210, 11syl 17 . . . 4 (𝑋AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V)
1312, 5elmapd 8419 . . 3 (𝑋AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})))
1413biimpar 480 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴))
154, 9, 14rspcdva 3624 1 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  c0 4290  𝒫 cpw 4538  {csn 4566  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  AC wacn 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8407  df-acn 9370
This theorem is referenced by:  acni2  9471
  Copyright terms: Public domain W3C validator