MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni2 Structured version   Visualization version   GIF version

Theorem acni2 8813
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝑔,𝐴   𝐵,𝑔   𝑔,𝑋,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem acni2
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4287 . . . . . . 7 (𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝐵 ∈ 𝒫 𝑋𝐵 ≠ ∅))
2 elpw2g 4787 . . . . . . . 8 (𝑋AC 𝐴 → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
32anbi1d 740 . . . . . . 7 (𝑋AC 𝐴 → ((𝐵 ∈ 𝒫 𝑋𝐵 ≠ ∅) ↔ (𝐵𝑋𝐵 ≠ ∅)))
41, 3syl5bb 272 . . . . . 6 (𝑋AC 𝐴 → (𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝐵𝑋𝐵 ≠ ∅)))
54ralbidv 2980 . . . . 5 (𝑋AC 𝐴 → (∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)))
65biimpar 502 . . . 4 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}))
7 eqid 2621 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87fmpt 6337 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅}))
96, 8sylib 208 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅}))
10 acni 8812 . . 3 ((𝑋AC 𝐴 ∧ (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦))
119, 10syldan 487 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦))
12 nffvmpt1 6156 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
1312nfel2 2777 . . . . 5 𝑥(𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦)
14 nfv 1840 . . . . 5 𝑦(𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)
15 fveq2 6148 . . . . . 6 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
16 fveq2 6148 . . . . . 6 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
1715, 16eleq12d 2692 . . . . 5 (𝑦 = 𝑥 → ((𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) ↔ (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)))
1813, 14, 17cbvral 3155 . . . 4 (∀𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥))
19 simplr 791 . . . . . . . . . 10 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅))
20 simplr 791 . . . . . . . . . . . . . . . . . 18 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝑥𝐴)
21 simpll 789 . . . . . . . . . . . . . . . . . . 19 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝑋AC 𝐴)
22 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝐵𝑋)
2321, 22ssexd 4765 . . . . . . . . . . . . . . . . . 18 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝐵 ∈ V)
247fvmpt2 6248 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2520, 23, 24syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2625eleq2d 2684 . . . . . . . . . . . . . . . 16 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵))
2726ex 450 . . . . . . . . . . . . . . 15 ((𝑋AC 𝐴𝑥𝐴) → (𝐵𝑋 → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
2827adantrd 484 . . . . . . . . . . . . . 14 ((𝑋AC 𝐴𝑥𝐴) → ((𝐵𝑋𝐵 ≠ ∅) → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
2928ralimdva 2956 . . . . . . . . . . . . 13 (𝑋AC 𝐴 → (∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅) → ∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
3029imp 445 . . . . . . . . . . . 12 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵))
31 ralbi 3061 . . . . . . . . . . . 12 (∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3230, 31syl 17 . . . . . . . . . . 11 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3332biimpa 501 . . . . . . . . . 10 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
34 ssel 3577 . . . . . . . . . . . 12 (𝐵𝑋 → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑋))
3534adantr 481 . . . . . . . . . . 11 ((𝐵𝑋𝐵 ≠ ∅) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑋))
3635ral2imi 2942 . . . . . . . . . 10 (∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋))
3719, 33, 36sylc 65 . . . . . . . . 9 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋)
38 fveq2 6148 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
3938eleq1d 2683 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑋 ↔ (𝑓𝑦) ∈ 𝑋))
4039rspccva 3294 . . . . . . . . 9 ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋𝑦𝐴) → (𝑓𝑦) ∈ 𝑋)
4137, 40sylan 488 . . . . . . . 8 ((((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ 𝑋)
42 eqid 2621 . . . . . . . 8 (𝑦𝐴 ↦ (𝑓𝑦)) = (𝑦𝐴 ↦ (𝑓𝑦))
4341, 42fmptd 6340 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → (𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋)
44 simpll 789 . . . . . . . 8 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → 𝑋AC 𝐴)
45 acnrcl 8809 . . . . . . . 8 (𝑋AC 𝐴𝐴 ∈ V)
4644, 45syl 17 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → 𝐴 ∈ V)
47 fex2 7068 . . . . . . 7 (((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋𝐴 ∈ V ∧ 𝑋AC 𝐴) → (𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
4843, 46, 44, 47syl3anc 1323 . . . . . 6 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → (𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
49 fvex 6158 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
5015, 42, 49fvmpt 6239 . . . . . . . . . 10 (𝑥𝐴 → ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) = (𝑓𝑥))
5150eleq1d 2683 . . . . . . . . 9 (𝑥𝐴 → (((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵 ↔ (𝑓𝑥) ∈ 𝐵))
5251ralbiia 2973 . . . . . . . 8 (∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
5333, 52sylibr 224 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵)
5443, 53jca 554 . . . . . 6 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
55 feq1 5983 . . . . . . . 8 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (𝑔:𝐴𝑋 ↔ (𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋))
56 fveq1 6147 . . . . . . . . . 10 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (𝑔𝑥) = ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥))
5756eleq1d 2683 . . . . . . . . 9 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑔𝑥) ∈ 𝐵 ↔ ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
5857ralbidv 2980 . . . . . . . 8 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
5955, 58anbi12d 746 . . . . . . 7 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵) ↔ ((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵)))
6059spcegv 3280 . . . . . 6 ((𝑦𝐴 ↦ (𝑓𝑦)) ∈ V → (((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6148, 54, 60sylc 65 . . . . 5 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
6261ex 450 . . . 4 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6318, 62syl5bi 232 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6463exlimdv 1858 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6511, 64mpd 15 1 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cdif 3552  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148  cmpt 4673  wf 5843  cfv 5847  AC wacn 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-acn 8712
This theorem is referenced by:  acni3  8814  acndom  8818  acnnum  8819  acndom2  8821  dfacacn  8907
  Copyright terms: Public domain W3C validator