Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongeq Structured version   Visualization version   GIF version

Theorem acongeq 36351
Description: Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 36370. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
acongeq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))))

Proof of Theorem acongeq
StepHypRef Expression
1 2z 11244 . . . . . . 7 2 ∈ ℤ
2 nnz 11234 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
323ad2ant1 1074 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ)
4 zmulcl 11261 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
51, 3, 4sylancr 693 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℤ)
6 elfzelz 12170 . . . . . . 7 (𝐵 ∈ (0...𝐴) → 𝐵 ∈ ℤ)
763ad2ant2 1075 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
8 congid 36339 . . . . . 6 (((2 · 𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ∥ (𝐵𝐵))
95, 7, 8syl2anc 690 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∥ (𝐵𝐵))
109adantr 479 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (2 · 𝐴) ∥ (𝐵𝐵))
11 oveq2 6534 . . . . 5 (𝐵 = 𝐶 → (𝐵𝐵) = (𝐵𝐶))
1211adantl 480 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (𝐵𝐵) = (𝐵𝐶))
1310, 12breqtrd 4603 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (2 · 𝐴) ∥ (𝐵𝐶))
1413orcd 405 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶)))
15 elfzelz 12170 . . . . . . . . . 10 (𝐶 ∈ (0...𝐴) → 𝐶 ∈ ℤ)
16153ad2ant3 1076 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
177, 16zsubcld 11321 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℤ)
1817zcnd 11317 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℂ)
1918abscld 13971 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵𝐶)) ∈ ℝ)
20 nnre 10876 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21203ad2ant1 1074 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
22 0re 9896 . . . . . . 7 0 ∈ ℝ
23 resubcl 10196 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 − 0) ∈ ℝ)
2421, 22, 23sylancl 692 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) ∈ ℝ)
25 2re 10939 . . . . . . 7 2 ∈ ℝ
26 remulcl 9877 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
2725, 21, 26sylancr 693 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℝ)
28 simp2 1054 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ (0...𝐴))
29 simp3 1055 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐴))
3024leidd 10445 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) ≤ (𝐴 − 0))
31 fzmaxdif 36349 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0...𝐴)) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ (0...𝐴)) ∧ (𝐴 − 0) ≤ (𝐴 − 0)) → (abs‘(𝐵𝐶)) ≤ (𝐴 − 0))
323, 28, 3, 29, 30, 31syl221anc 1328 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵𝐶)) ≤ (𝐴 − 0))
33 nnrp 11676 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
34333ad2ant1 1074 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ+)
3521, 34ltaddrpd 11739 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 < (𝐴 + 𝐴))
3621recnd 9924 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
3736subid1d 10232 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴)
38362timesd 11124 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) = (𝐴 + 𝐴))
3935, 37, 383brtr4d 4609 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) < (2 · 𝐴))
4019, 24, 27, 32, 39lelttrd 10046 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵𝐶)) < (2 · 𝐴))
4140adantr 479 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → (abs‘(𝐵𝐶)) < (2 · 𝐴))
42 2nn 11034 . . . . . 6 2 ∈ ℕ
43 simpl1 1056 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐴 ∈ ℕ)
44 nnmulcl 10892 . . . . . 6 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
4542, 43, 44sylancr 693 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → (2 · 𝐴) ∈ ℕ)
46 simpl2 1057 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐵 ∈ (0...𝐴))
4746, 6syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐵 ∈ ℤ)
48 simpl3 1058 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐶 ∈ (0...𝐴))
4948, 15syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐶 ∈ ℤ)
50 simpr 475 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → (2 · 𝐴) ∥ (𝐵𝐶))
51 congabseq 36342 . . . . 5 ((((2 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < (2 · 𝐴) ↔ 𝐵 = 𝐶))
5245, 47, 49, 50, 51syl31anc 1320 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < (2 · 𝐴) ↔ 𝐵 = 𝐶))
5341, 52mpbid 220 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐵 = 𝐶)
54 simpll2 1093 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ (0...𝐴))
55 elfzle1 12172 . . . . . . . . . . 11 (𝐵 ∈ (0...𝐴) → 0 ≤ 𝐵)
5654, 55syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ 𝐵)
577zred 11316 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
5816zred 11316 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
5958renegcld 10308 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -𝐶 ∈ ℝ)
6057, 59resubcld 10309 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) ∈ ℝ)
6160recnd 9924 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) ∈ ℂ)
6261abscld 13971 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵 − -𝐶)) ∈ ℝ)
6362ad2antrr 757 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) ∈ ℝ)
64 1re 9895 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
65 resubcl 10196 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
6621, 64, 65sylancl 692 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℝ)
6766renegcld 10308 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -(𝐴 − 1) ∈ ℝ)
6821, 67resubcld 10309 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) ∈ ℝ)
6968ad2antrr 757 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐴 − -(𝐴 − 1)) ∈ ℝ)
7027ad2antrr 757 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∈ ℝ)
717ad2antrr 757 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ ℤ)
7271zcnd 11317 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ ℂ)
7316znegcld 11318 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -𝐶 ∈ ℤ)
7473ad2antrr 757 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ ℤ)
7574zcnd 11317 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ ℂ)
7672, 75abssubd 13988 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) = (abs‘(-𝐶𝐵)))
77 0zd 11224 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ∈ ℤ)
78 simpr 475 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ∈ (0...(𝐴 − 1)))
79 0zd 11224 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ)
80 1z 11242 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℤ
81 zsubcl 11254 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴 − 1) ∈ ℤ)
823, 80, 81sylancl 692 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℤ)
83 fzneg 36350 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0)))
8416, 79, 82, 83syl3anc 1317 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0)))
8584ad2antrr 757 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0)))
8678, 85mpbid 220 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ (-(𝐴 − 1)...-0))
87 neg0 10178 . . . . . . . . . . . . . . . . 17 -0 = 0
8887a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -0 = 0)
8988oveq2d 6542 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (-(𝐴 − 1)...-0) = (-(𝐴 − 1)...0))
9086, 89eleqtrd 2689 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ (-(𝐴 − 1)...0))
913ad2antrr 757 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐴 ∈ ℤ)
92 simp1 1053 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ)
9342, 92, 44sylancr 693 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℕ)
94 nnm1nn0 11183 . . . . . . . . . . . . . . . . . 18 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) − 1) ∈ ℕ0)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) ∈ ℕ0)
9695nn0ge0d 11203 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 0 ≤ ((2 · 𝐴) − 1))
97 0m0e0 10979 . . . . . . . . . . . . . . . . 17 (0 − 0) = 0
9897a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (0 − 0) = 0)
99 1cnd 9912 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 1 ∈ ℂ)
10036, 36, 99addsubassd 10263 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) − 1) = (𝐴 + (𝐴 − 1)))
10138oveq1d 6541 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) = ((𝐴 + 𝐴) − 1))
102 ax-1cn 9850 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
103 subcl 10131 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
10436, 102, 103sylancl 692 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℂ)
10536, 104subnegd 10250 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) = (𝐴 + (𝐴 − 1)))
106100, 101, 1053eqtr4rd 2654 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) = ((2 · 𝐴) − 1))
10796, 98, 1063brtr4d 4609 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (0 − 0) ≤ (𝐴 − -(𝐴 − 1)))
108107ad2antrr 757 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (0 − 0) ≤ (𝐴 − -(𝐴 − 1)))
109 fzmaxdif 36349 . . . . . . . . . . . . . 14 (((0 ∈ ℤ ∧ -𝐶 ∈ (-(𝐴 − 1)...0)) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ (0...𝐴)) ∧ (0 − 0) ≤ (𝐴 − -(𝐴 − 1))) → (abs‘(-𝐶𝐵)) ≤ (𝐴 − -(𝐴 − 1)))
11077, 90, 91, 54, 108, 109syl221anc 1328 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(-𝐶𝐵)) ≤ (𝐴 − -(𝐴 − 1)))
11176, 110eqbrtrd 4599 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) ≤ (𝐴 − -(𝐴 − 1)))
11227ltm1d 10807 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) < (2 · 𝐴))
113106, 112eqbrtrd 4599 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) < (2 · 𝐴))
114113ad2antrr 757 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐴 − -(𝐴 − 1)) < (2 · 𝐴))
11563, 69, 70, 111, 114lelttrd 10046 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) < (2 · 𝐴))
11693ad2antrr 757 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∈ ℕ)
117 simplr 787 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∥ (𝐵 − -𝐶))
118 congabseq 36342 . . . . . . . . . . . 12 ((((2 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ -𝐶 ∈ ℤ) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → ((abs‘(𝐵 − -𝐶)) < (2 · 𝐴) ↔ 𝐵 = -𝐶))
119116, 71, 74, 117, 118syl31anc 1320 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → ((abs‘(𝐵 − -𝐶)) < (2 · 𝐴) ↔ 𝐵 = -𝐶))
120115, 119mpbid 220 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 = -𝐶)
12156, 120breqtrd 4603 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ -𝐶)
122 elfzelz 12170 . . . . . . . . . . . 12 (𝐶 ∈ (0...(𝐴 − 1)) → 𝐶 ∈ ℤ)
123122zred 11316 . . . . . . . . . . 11 (𝐶 ∈ (0...(𝐴 − 1)) → 𝐶 ∈ ℝ)
124123adantl 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ∈ ℝ)
125124le0neg1d 10450 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 ≤ 0 ↔ 0 ≤ -𝐶))
126121, 125mpbird 245 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ≤ 0)
127 elfzle1 12172 . . . . . . . . 9 (𝐶 ∈ (0...(𝐴 − 1)) → 0 ≤ 𝐶)
128127adantl 480 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ 𝐶)
129 letri3 9974 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐶 = 0 ↔ (𝐶 ≤ 0 ∧ 0 ≤ 𝐶)))
130124, 22, 129sylancl 692 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 = 0 ↔ (𝐶 ≤ 0 ∧ 0 ≤ 𝐶)))
131126, 128, 130mpbir2and 958 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 = 0)
132131negeqd 10126 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 = -0)
133132, 88eqtrd 2643 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 = 0)
134133, 120, 1313eqtr4d 2653 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 = 𝐶)
135 oveq2 6534 . . . . . . . . 9 (𝐶 = 𝐴 → (𝐵𝐶) = (𝐵𝐴))
136135adantl 480 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵𝐶) = (𝐵𝐴))
137136fveq2d 6091 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵𝐶)) = (abs‘(𝐵𝐴)))
13840ad2antrr 757 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵𝐶)) < (2 · 𝐴))
139137, 138eqbrtrrd 4601 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵𝐴)) < (2 · 𝐴))
14093ad2antrr 757 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∈ ℕ)
1417ad2antrr 757 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 ∈ ℤ)
1423ad2antrr 757 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐴 ∈ ℤ)
143 simplr 787 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ (𝐵 − -𝐶))
1447zcnd 11317 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
14536, 36, 144ppncand 10283 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐴 + 𝐵))
14636, 144addcomd 10089 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
147145, 146eqtrd 2643 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐴))
148147ad2antrr 757 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐴))
149 oveq2 6534 . . . . . . . . . . . 12 (𝐶 = 𝐴 → (𝐵 + 𝐶) = (𝐵 + 𝐴))
150149adantl 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 + 𝐶) = (𝐵 + 𝐴))
151148, 150eqtr4d 2646 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐶))
15238oveq1d 6541 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) + (𝐵𝐴)) = ((𝐴 + 𝐴) + (𝐵𝐴)))
153152ad2antrr 757 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) + (𝐵𝐴)) = ((𝐴 + 𝐴) + (𝐵𝐴)))
15416zcnd 11317 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℂ)
155144, 154subnegd 10250 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) = (𝐵 + 𝐶))
156155ad2antrr 757 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 − -𝐶) = (𝐵 + 𝐶))
157151, 153, 1563eqtr4d 2653 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) + (𝐵𝐴)) = (𝐵 − -𝐶))
158143, 157breqtrrd 4605 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵𝐴)))
1595ad2antrr 757 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∈ ℤ)
1607, 3zsubcld 11321 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵𝐴) ∈ ℤ)
161160ad2antrr 757 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵𝐴) ∈ ℤ)
162 dvdsadd 14810 . . . . . . . . 9 (((2 · 𝐴) ∈ ℤ ∧ (𝐵𝐴) ∈ ℤ) → ((2 · 𝐴) ∥ (𝐵𝐴) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵𝐴))))
163159, 161, 162syl2anc 690 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) ∥ (𝐵𝐴) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵𝐴))))
164158, 163mpbird 245 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ (𝐵𝐴))
165 congabseq 36342 . . . . . . 7 ((((2 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (2 · 𝐴) ∥ (𝐵𝐴)) → ((abs‘(𝐵𝐴)) < (2 · 𝐴) ↔ 𝐵 = 𝐴))
166140, 141, 142, 164, 165syl31anc 1320 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((abs‘(𝐵𝐴)) < (2 · 𝐴) ↔ 𝐵 = 𝐴))
167139, 166mpbid 220 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 = 𝐴)
168 simpr 475 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴)
169167, 168eqtr4d 2646 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 = 𝐶)
170 nnnn0 11148 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
1711703ad2ant1 1074 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
172 nn0uz 11556 . . . . . . 7 0 = (ℤ‘0)
173171, 172syl6eleq 2697 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ (ℤ‘0))
174 fzm1 12246 . . . . . . 7 (𝐴 ∈ (ℤ‘0) → (𝐶 ∈ (0...𝐴) ↔ (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴)))
175174biimpa 499 . . . . . 6 ((𝐴 ∈ (ℤ‘0) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴))
176173, 29, 175syl2anc 690 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴))
177176adantr 479 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴))
178134, 169, 177mpjaodan 822 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → 𝐵 = 𝐶)
17953, 178jaodan 821 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))) → 𝐵 = 𝐶)
18014, 179impbida 872 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5789  (class class class)co 6526  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117  -cneg 10118  cn 10869  2c2 10919  0cn0 11141  cz 11212  cuz 11521  +crp 11666  ...cfz 12154  abscabs 13770  cdvds 14769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-seq 12621  df-exp 12680  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-dvds 14770
This theorem is referenced by:  jm2.27a  36373
  Copyright terms: Public domain W3C validator