Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongtr Structured version   Visualization version   GIF version

Theorem acongtr 39453
Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongtr (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))

Proof of Theorem acongtr
StepHypRef Expression
1 congtr 39440 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
213expa 1110 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
32orcd 869 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
43ex 413 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
5 simpll 763 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
6 znegcl 12005 . . . . . . . 8 (𝐶 ∈ ℤ → -𝐶 ∈ ℤ)
7 znegcl 12005 . . . . . . . 8 (𝐷 ∈ ℤ → -𝐷 ∈ ℤ)
86, 7anim12i 612 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
98ad2antlr 723 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
10 simplll 771 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∈ ℤ)
11 simplrl 773 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐶 ∈ ℤ)
12 simplrr 774 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐷 ∈ ℤ)
13 simpr 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∥ (𝐶𝐷))
14 congsym 39443 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐷𝐶))
1510, 11, 12, 13, 14syl22anc 834 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∥ (𝐷𝐶))
1615ex 413 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶𝐷) → 𝐴 ∥ (𝐷𝐶)))
17 zcn 11974 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1817adantr 481 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℂ)
19 zcn 11974 . . . . . . . . . . . . . 14 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
2019adantl 482 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℂ)
2118, 20neg2subd 11002 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 − -𝐷) = (𝐷𝐶))
2221adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐶 − -𝐷) = (𝐷𝐶))
2322eqcomd 2824 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐷𝐶) = (-𝐶 − -𝐷))
2423breq2d 5069 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐷𝐶) ↔ 𝐴 ∥ (-𝐶 − -𝐷)))
2516, 24sylibd 240 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶𝐷) → 𝐴 ∥ (-𝐶 − -𝐷)))
2625anim2d 611 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))))
2726imp 407 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷)))
28 congtr 39440 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
295, 9, 27, 28syl3anc 1363 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3029olcd 870 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
3130ex 413 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
32 simpll 763 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
337anim2i 616 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
3433ad2antlr 723 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
35 simpr 485 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)))
36 congtr 39440 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3732, 34, 35, 36syl3anc 1363 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3837olcd 870 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
3938ex 413 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
40 simpll 763 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
416anim1i 614 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ))
4241ad2antlr 723 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ))
43 simpl 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ)
44 simpr 485 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
4543, 44anim12i 612 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
4645an42s 657 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
4746adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
487adantl 482 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐷 ∈ ℤ)
4948ad2antlr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → -𝐷 ∈ ℤ)
50 simpr 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (𝐶 − -𝐷))
51 congsym 39443 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (-𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (-𝐷𝐶))
5247, 49, 50, 51syl12anc 832 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (-𝐷𝐶))
5352ex 413 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐷𝐶)))
5418negnegd 10976 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → --𝐶 = 𝐶)
5554oveq2d 7161 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐷𝐶))
56 zcn 11974 . . . . . . . . . . . . . . 15 (-𝐶 ∈ ℤ → -𝐶 ∈ ℂ)
5756adantr 481 . . . . . . . . . . . . . 14 ((-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) → -𝐶 ∈ ℂ)
588, 57syl 17 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐶 ∈ ℂ)
5920, 58neg2subd 11002 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐶𝐷))
6055, 59eqtr3d 2855 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷𝐶) = (-𝐶𝐷))
6160adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐷𝐶) = (-𝐶𝐷))
6261breq2d 5069 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (-𝐷𝐶) ↔ 𝐴 ∥ (-𝐶𝐷)))
6353, 62sylibd 240 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐶𝐷)))
6463anim2d 611 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷))))
6564imp 407 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷)))
66 congtr 39440 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
6740, 42, 65, 66syl3anc 1363 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵𝐷))
6867orcd 869 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
6968ex 413 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
704, 31, 39, 69ccased 1030 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
71703impia 1109 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  (class class class)co 7145  cc 10523  cmin 10858  -cneg 10859  cz 11969  cdvds 15595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-dvds 15596
This theorem is referenced by:  jm2.25lem1  39473  jm2.26  39477  jm2.27a  39480
  Copyright terms: Public domain W3C validator