Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongtr Structured version   Visualization version   GIF version

Theorem acongtr 36363
Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongtr (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))

Proof of Theorem acongtr
StepHypRef Expression
1 congtr 36350 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
213expa 1256 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
32orcd 405 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
43ex 448 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
5 simpll 785 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
6 znegcl 11242 . . . . . . . 8 (𝐶 ∈ ℤ → -𝐶 ∈ ℤ)
7 znegcl 11242 . . . . . . . 8 (𝐷 ∈ ℤ → -𝐷 ∈ ℤ)
86, 7anim12i 587 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
98ad2antlr 758 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
10 simplll 793 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∈ ℤ)
11 simplrl 795 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐶 ∈ ℤ)
12 simplrr 796 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐷 ∈ ℤ)
13 simpr 475 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∥ (𝐶𝐷))
14 congsym 36353 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐷𝐶))
1510, 11, 12, 13, 14syl22anc 1318 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∥ (𝐷𝐶))
1615ex 448 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶𝐷) → 𝐴 ∥ (𝐷𝐶)))
17 zcn 11212 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1817adantr 479 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℂ)
19 zcn 11212 . . . . . . . . . . . . . 14 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
2019adantl 480 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℂ)
2118, 20neg2subd 10257 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 − -𝐷) = (𝐷𝐶))
2221adantl 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐶 − -𝐷) = (𝐷𝐶))
2322eqcomd 2612 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐷𝐶) = (-𝐶 − -𝐷))
2423breq2d 4586 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐷𝐶) ↔ 𝐴 ∥ (-𝐶 − -𝐷)))
2516, 24sylibd 227 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶𝐷) → 𝐴 ∥ (-𝐶 − -𝐷)))
2625anim2d 586 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))))
2726imp 443 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷)))
28 congtr 36350 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
295, 9, 27, 28syl3anc 1317 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3029olcd 406 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
3130ex 448 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
32 simpll 785 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
337anim2i 590 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
3433ad2antlr 758 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
35 simpr 475 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)))
36 congtr 36350 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3732, 34, 35, 36syl3anc 1317 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3837olcd 406 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
3938ex 448 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
40 simpll 785 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
416anim1i 589 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ))
4241ad2antlr 758 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ))
43 simpl 471 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ)
44 simpr 475 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
4543, 44anim12i 587 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
4645an42s 865 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
4746adantr 479 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
487adantl 480 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐷 ∈ ℤ)
4948ad2antlr 758 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → -𝐷 ∈ ℤ)
50 simpr 475 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (𝐶 − -𝐷))
51 congsym 36353 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (-𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (-𝐷𝐶))
5247, 49, 50, 51syl12anc 1315 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (-𝐷𝐶))
5352ex 448 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐷𝐶)))
5418negnegd 10231 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → --𝐶 = 𝐶)
5554oveq2d 6540 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐷𝐶))
56 zcn 11212 . . . . . . . . . . . . . . 15 (-𝐶 ∈ ℤ → -𝐶 ∈ ℂ)
5756adantr 479 . . . . . . . . . . . . . 14 ((-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) → -𝐶 ∈ ℂ)
588, 57syl 17 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐶 ∈ ℂ)
5920, 58neg2subd 10257 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐶𝐷))
6055, 59eqtr3d 2642 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷𝐶) = (-𝐶𝐷))
6160adantl 480 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐷𝐶) = (-𝐶𝐷))
6261breq2d 4586 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (-𝐷𝐶) ↔ 𝐴 ∥ (-𝐶𝐷)))
6353, 62sylibd 227 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐶𝐷)))
6463anim2d 586 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷))))
6564imp 443 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷)))
66 congtr 36350 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
6740, 42, 65, 66syl3anc 1317 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵𝐷))
6867orcd 405 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
6968ex 448 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
704, 31, 39, 69ccased 984 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
71703impia 1252 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4574  (class class class)co 6524  cc 9787  cmin 10114  -cneg 10115  cz 11207  cdvds 14764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-n0 11137  df-z 11208  df-dvds 14765
This theorem is referenced by:  jm2.25lem1  36383  jm2.26  36387  jm2.27a  36390
  Copyright terms: Public domain W3C validator