MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrsel Structured version   Visualization version   GIF version

Theorem acsdrsel 17779
Description: An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
acsdrsel ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → 𝑌𝐶)

Proof of Theorem acsdrsel
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . . 5 (𝑠 = 𝑌 → (toInc‘𝑠) = (toInc‘𝑌))
21eleq1d 2899 . . . 4 (𝑠 = 𝑌 → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset))
3 unieq 4851 . . . . 5 (𝑠 = 𝑌 𝑠 = 𝑌)
43eleq1d 2899 . . . 4 (𝑠 = 𝑌 → ( 𝑠𝐶 𝑌𝐶))
52, 4imbi12d 347 . . 3 (𝑠 = 𝑌 → (((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) ↔ ((toInc‘𝑌) ∈ Dirset → 𝑌𝐶)))
6 isacs3lem 17778 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
76simprd 498 . . . 4 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
87adantr 483 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
9 elpw2g 5249 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝐶𝑌𝐶))
109biimpar 480 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → 𝑌 ∈ 𝒫 𝐶)
115, 8, 10rspcdva 3627 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → ((toInc‘𝑌) ∈ Dirset → 𝑌𝐶))
12113impia 1113 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → 𝑌𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wss 3938  𝒫 cpw 4541   cuni 4840  cfv 6357  Moorecmre 16855  ACScacs 16858  Dirsetcdrs 17539  toInccipo 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-tset 16586  df-ple 16587  df-ocomp 16588  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-drs 17541  df-poset 17558  df-ipo 17764
This theorem is referenced by:  isnacs3  39314
  Copyright terms: Public domain W3C validator