MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsficl2d Structured version   Visualization version   GIF version

Theorem acsficl2d 17157
Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 17152. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsficld.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsficld.2 𝑁 = (mrCls‘𝐴)
acsficld.3 (𝜑𝑆𝑋)
Assertion
Ref Expression
acsficl2d (𝜑 → (𝑌 ∈ (𝑁𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑌   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑋(𝑥)

Proof of Theorem acsficl2d
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsficld.1 . . . 4 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsficld.2 . . . 4 𝑁 = (mrCls‘𝐴)
3 acsficld.3 . . . 4 (𝜑𝑆𝑋)
41, 2, 3acsficld 17156 . . 3 (𝜑 → (𝑁𝑆) = (𝑁 “ (𝒫 𝑆 ∩ Fin)))
54eleq2d 2685 . 2 (𝜑 → (𝑌 ∈ (𝑁𝑆) ↔ 𝑌 (𝑁 “ (𝒫 𝑆 ∩ Fin))))
61acsmred 16298 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
7 funmpt 5914 . . . 4 Fun (𝑧 ∈ 𝒫 𝑋 {𝑤𝐴𝑧𝑤})
82mrcfval 16249 . . . . 5 (𝐴 ∈ (Moore‘𝑋) → 𝑁 = (𝑧 ∈ 𝒫 𝑋 {𝑤𝐴𝑧𝑤}))
98funeqd 5898 . . . 4 (𝐴 ∈ (Moore‘𝑋) → (Fun 𝑁 ↔ Fun (𝑧 ∈ 𝒫 𝑋 {𝑤𝐴𝑧𝑤})))
107, 9mpbiri 248 . . 3 (𝐴 ∈ (Moore‘𝑋) → Fun 𝑁)
11 eluniima 6493 . . 3 (Fun 𝑁 → (𝑌 (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
126, 10, 113syl 18 . 2 (𝜑 → (𝑌 (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
135, 12bitrd 268 1 (𝜑 → (𝑌 ∈ (𝑁𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1481  wcel 1988  wrex 2910  {crab 2913  cin 3566  wss 3567  𝒫 cpw 4149   cuni 4427   cint 4466  cmpt 4720  cima 5107  Fun wfun 5870  cfv 5876  Fincfn 7940  Moorecmre 16223  mrClscmrc 16224  ACScacs 16226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-tset 15941  df-ple 15942  df-ocomp 15944  df-mre 16227  df-mrc 16228  df-acs 16230  df-preset 16909  df-drs 16910  df-poset 16927  df-ipo 17133
This theorem is referenced by:  acsfiindd  17158  acsmapd  17159
  Copyright terms: Public domain W3C validator