MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiindd Structured version   Visualization version   GIF version

Theorem acsfiindd 17775
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsfiindd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsfiindd.2 𝑁 = (mrCls‘𝐴)
acsfiindd.3 𝐼 = (mrInd‘𝐴)
acsfiindd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
acsfiindd (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))

Proof of Theorem acsfiindd
Dummy variables 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsfiindd.1 . . . . . . 7 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 16915 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
32ad2antrr 722 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐴 ∈ (Moore‘𝑋))
4 acsfiindd.2 . . . . 5 𝑁 = (mrCls‘𝐴)
5 acsfiindd.3 . . . . 5 𝐼 = (mrInd‘𝐴)
6 simplr 765 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐼)
7 simpr 485 . . . . . . 7 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ (𝒫 𝑆 ∩ Fin))
87elin1d 4172 . . . . . 6 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ 𝒫 𝑆)
98elpwid 4549 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝑆)
103, 4, 5, 6, 9mrissmrid 16900 . . . 4 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝐼)
1110ralrimiva 3179 . . 3 ((𝜑𝑆𝐼) → ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
12 dfss3 3953 . . 3 ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 ↔ ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
1311, 12sylibr 235 . 2 ((𝜑𝑆𝐼) → (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)
142adantr 481 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝐴 ∈ (Moore‘𝑋))
15 acsfiindd.4 . . . 4 (𝜑𝑆𝑋)
1615adantr 481 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝑋)
17 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin))
18 elfpw 8814 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ↔ (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
1917, 18sylib 219 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
2019simpld 495 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
2120difss2d 4108 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡𝑆)
22 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑥𝑆)
2322snssd 4734 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → {𝑥} ⊆ 𝑆)
2421, 23unssd 4159 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
2519simprd 496 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ Fin)
26 snfi 8582 . . . . . . . . . . . 12 {𝑥} ∈ Fin
27 unfi 8773 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝑡 ∪ {𝑥}) ∈ Fin)
2825, 26, 27sylancl 586 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ Fin)
29 elfpw 8814 . . . . . . . . . . 11 ((𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin) ↔ ((𝑡 ∪ {𝑥}) ⊆ 𝑆 ∧ (𝑡 ∪ {𝑥}) ∈ Fin))
3024, 28, 29sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin))
312ad4antr 728 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝐴 ∈ (Moore‘𝑋))
32 simpr 485 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑠𝐼)
33 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑆)
34 snidg 4589 . . . . . . . . . . . . . . . 16 (𝑥𝑆𝑥 ∈ {𝑥})
35 elun2 4150 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥} → 𝑥 ∈ (𝑡 ∪ {𝑥}))
3633, 34, 353syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥 ∈ (𝑡 ∪ {𝑥}))
37 simpr 485 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠 = (𝑡 ∪ {𝑥}))
3836, 37eleqtrrd 2913 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑠)
3938adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑥𝑠)
404, 5, 31, 32, 39ismri2dad 16896 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
412ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝐴 ∈ (Moore‘𝑋))
4220adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
43 neldifsnd 4718 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥 ∈ (𝑆 ∖ {𝑥}))
4442, 43ssneldd 3967 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥𝑡)
45 difsnb 4731 . . . . . . . . . . . . . . . . 17 𝑥𝑡 ↔ (𝑡 ∖ {𝑥}) = 𝑡)
4644, 45sylib 219 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) = 𝑡)
47 ssun1 4145 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {𝑥})
4847, 37sseqtrrid 4017 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡𝑠)
4948ssdifd 4114 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) ⊆ (𝑠 ∖ {𝑥}))
5046, 49eqsstrrd 4003 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑠 ∖ {𝑥}))
5124adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
5215ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑆𝑋)
5351, 52sstrd 3974 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑋)
5437, 53eqsstrd 4002 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠𝑋)
5554ssdifssd 4116 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠 ∖ {𝑥}) ⊆ 𝑋)
5641, 4, 50, 55mrcssd 16883 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑁𝑡) ⊆ (𝑁‘(𝑠 ∖ {𝑥})))
5756sseld 3963 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5857adantr 481 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5940, 58mtod 199 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁𝑡))
6059ex 413 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6130, 60rspcimdv 3610 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6212, 61syl5bi 243 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6362impancom 452 . . . . . . 7 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) → ¬ 𝑥 ∈ (𝑁𝑡)))
6463ralrimiv 3178 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡))
6515ssdifssd 4116 . . . . . . . . . 10 (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
661, 4, 65acsficl2d 17774 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
6766notbid 319 . . . . . . . 8 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
68 ralnex 3233 . . . . . . . 8 (∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡))
6967, 68syl6bbr 290 . . . . . . 7 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7069ad2antrr 722 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7164, 70mpbird 258 . . . . 5 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7271an32s 648 . . . 4 (((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7372ralrimiva 3179 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
744, 5, 14, 16, 73ismri2dd 16893 . 2 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝐼)
7513, 74impbida 797 1 (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  cdif 3930  cun 3931  cin 3932  wss 3933  𝒫 cpw 4535  {csn 4557  cfv 6348  Fincfn 8497  Moorecmre 16841  mrClscmrc 16842  mrIndcmri 16843  ACScacs 16844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-tset 16572  df-ple 16573  df-ocomp 16574  df-mre 16845  df-mrc 16846  df-mri 16847  df-acs 16848  df-proset 17526  df-drs 17527  df-poset 17544  df-ipo 17750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator