MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1 Structured version   Visualization version   GIF version

Theorem acsfn1 16254
Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑉   𝑋,𝑎,𝑏   𝐸,𝑎
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem acsfn1
StepHypRef Expression
1 elpwi 4145 . . . . . 6 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 3652 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
31, 2syl 17 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
4 vex 3192 . . . . . . . 8 𝑏 ∈ V
54snss 4291 . . . . . . 7 (𝑏𝑎 ↔ {𝑏} ⊆ 𝑎)
65imbi1i 339 . . . . . 6 ((𝑏𝑎𝐸𝑎) ↔ ({𝑏} ⊆ 𝑎𝐸𝑎))
76ralbii 2975 . . . . 5 (∀𝑏𝑋 (𝑏𝑎𝐸𝑎) ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎))
83, 7syl6bb 276 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)))
98rabbiia 3176 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
10 riinrab 4567 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
119, 10eqtr4i 2646 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)})
12 mreacs 16251 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
1312adantr 481 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
14 simpll 789 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝑋𝑉)
15 simpr 477 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝐸𝑋)
16 snssi 4313 . . . . . . . 8 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
1716ad2antlr 762 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ⊆ 𝑋)
18 snfi 7990 . . . . . . . 8 {𝑏} ∈ Fin
1918a1i 11 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ∈ Fin)
20 acsfn 16252 . . . . . . 7 (((𝑋𝑉𝐸𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2114, 15, 17, 19, 20syl22anc 1324 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2221ex 450 . . . . 5 ((𝑋𝑉𝑏𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2322ralimdva 2957 . . . 4 (𝑋𝑉 → (∀𝑏𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2423imp 445 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
25 mreriincl 16190 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2613, 24, 25syl2anc 692 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2711, 26syl5eqel 2702 1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  wral 2907  {crab 2911  cin 3558  wss 3559  𝒫 cpw 4135  {csn 4153   ciin 4491  cfv 5852  Fincfn 7907  Moorecmre 16174  ACScacs 16177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-en 7908  df-fin 7911  df-mre 16178  df-mrc 16179  df-acs 16181
This theorem is referenced by:  acsfn1c  16255  subgacs  17561  sdrgacs  37287
  Copyright terms: Public domain W3C validator