MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsinfdimd Structured version   Visualization version   GIF version

Theorem acsinfdimd 16951
Description: In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd 16950 twice with acsinfd 16949. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsinfdimd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsinfdimd.2 𝑁 = (mrCls‘𝐴)
acsinfdimd.3 𝐼 = (mrInd‘𝐴)
acsinfdimd.4 (𝜑𝑆𝐼)
acsinfdimd.5 (𝜑𝑇𝐼)
acsinfdimd.6 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
acsinfdimd.7 (𝜑 → ¬ 𝑆 ∈ Fin)
Assertion
Ref Expression
acsinfdimd (𝜑𝑆𝑇)

Proof of Theorem acsinfdimd
StepHypRef Expression
1 acsinfdimd.1 . . 3 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsinfdimd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 acsinfdimd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 acsinfdimd.4 . . 3 (𝜑𝑆𝐼)
51acsmred 16086 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
6 acsinfdimd.5 . . . 4 (𝜑𝑇𝐼)
73, 5, 6mrissd 16065 . . 3 (𝜑𝑇𝑋)
8 acsinfdimd.6 . . 3 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
9 acsinfdimd.7 . . 3 (𝜑 → ¬ 𝑆 ∈ Fin)
101, 2, 3, 4, 7, 8, 9acsdomd 16950 . 2 (𝜑𝑆𝑇)
113, 5, 4mrissd 16065 . . 3 (𝜑𝑆𝑋)
128eqcomd 2615 . . 3 (𝜑 → (𝑁𝑇) = (𝑁𝑆))
131, 2, 3, 4, 7, 8, 9acsinfd 16949 . . 3 (𝜑 → ¬ 𝑇 ∈ Fin)
141, 2, 3, 6, 11, 12, 13acsdomd 16950 . 2 (𝜑𝑇𝑆)
15 sbth 7942 . 2 ((𝑆𝑇𝑇𝑆) → 𝑆𝑇)
1610, 14, 15syl2anc 690 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  cen 7815  cdom 7816  Fincfn 7818  mrClscmrc 16012  mrIndcmri 16013  ACScacs 16014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-reg 8357  ax-inf2 8398  ax-ac2 9145  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-oi 8275  df-r1 8487  df-rank 8488  df-card 8625  df-acn 8628  df-ac 8799  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-tset 15733  df-ple 15734  df-ocomp 15736  df-mre 16015  df-mrc 16016  df-mri 16017  df-acs 16018  df-preset 16697  df-drs 16698  df-poset 16715  df-ipo 16921
This theorem is referenced by:  acsexdimd  16952
  Copyright terms: Public domain W3C validator