Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  actfunsnf1o Structured version   Visualization version   GIF version

Theorem actfunsnf1o 30810
Description: The action 𝐹 of extending function from 𝐵 to 𝐶 with new values at point 𝐼 is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Hypotheses
Ref Expression
actfunsn.1 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶𝑚 𝐵))
actfunsn.2 (𝜑𝐶 ∈ V)
actfunsn.3 (𝜑𝐼𝑉)
actfunsn.4 (𝜑 → ¬ 𝐼𝐵)
actfunsn.5 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
Assertion
Ref Expression
actfunsnf1o ((𝜑𝑘𝐶) → 𝐹:𝐴1-1-onto→ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑘,𝐼,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑘)   𝐵(𝑥,𝑘)   𝐶(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem actfunsnf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 actfunsn.5 . . 3 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
2 uneq1 3793 . . . 4 (𝑥 = 𝑧 → (𝑥 ∪ {⟨𝐼, 𝑘⟩}) = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
32cbvmptv 4783 . . 3 (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩})) = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
41, 3eqtri 2673 . 2 𝐹 = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
5 vex 3234 . . . 4 𝑧 ∈ V
6 snex 4938 . . . 4 {⟨𝐼, 𝑘⟩} ∈ V
75, 6unex 6998 . . 3 (𝑧 ∪ {⟨𝐼, 𝑘⟩}) ∈ V
87a1i 11 . 2 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → (𝑧 ∪ {⟨𝐼, 𝑘⟩}) ∈ V)
9 vex 3234 . . . 4 𝑦 ∈ V
109resex 5478 . . 3 (𝑦𝐵) ∈ V
1110a1i 11 . 2 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐵) ∈ V)
12 rspe 3032 . . . . . . 7 ((𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ∃𝑧𝐴 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
134, 7elrnmpti 5408 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝐴 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
1412, 13sylibr 224 . . . . . 6 ((𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 ∈ ran 𝐹)
1514adantll 750 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 ∈ ran 𝐹)
16 simpr 476 . . . . . . 7 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
1716reseq1d 5427 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) = ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵))
18 actfunsn.1 . . . . . . . . . 10 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶𝑚 𝐵))
1918sselda 3636 . . . . . . . . 9 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → 𝑧 ∈ (𝐶𝑚 𝐵))
20 elmapfn 7922 . . . . . . . . 9 (𝑧 ∈ (𝐶𝑚 𝐵) → 𝑧 Fn 𝐵)
2119, 20syl 17 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → 𝑧 Fn 𝐵)
22 actfunsn.3 . . . . . . . . . 10 (𝜑𝐼𝑉)
23 fnsng 5976 . . . . . . . . . 10 ((𝐼𝑉𝑘𝐶) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
2422, 23sylan 487 . . . . . . . . 9 ((𝜑𝑘𝐶) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
2524adantr 480 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
26 actfunsn.4 . . . . . . . . . . 11 (𝜑 → ¬ 𝐼𝐵)
27 disjsn 4278 . . . . . . . . . . 11 ((𝐵 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼𝐵)
2826, 27sylibr 224 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ {𝐼}) = ∅)
2928adantr 480 . . . . . . . . 9 ((𝜑𝑘𝐶) → (𝐵 ∩ {𝐼}) = ∅)
3029adantr 480 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → (𝐵 ∩ {𝐼}) = ∅)
31 fnunres1 29543 . . . . . . . 8 ((𝑧 Fn 𝐵 ∧ {⟨𝐼, 𝑘⟩} Fn {𝐼} ∧ (𝐵 ∩ {𝐼}) = ∅) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
3221, 25, 30, 31syl3anc 1366 . . . . . . 7 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
3332adantr 480 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
3417, 33eqtr2d 2686 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧 = (𝑦𝐵))
3515, 34jca 553 . . . 4 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵)))
3635anasss 680 . . 3 (((𝜑𝑘𝐶) ∧ (𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))) → (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵)))
37 simpr 476 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → 𝑧 = (𝑦𝐵))
38 simpr 476 . . . . . . . . . 10 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3938reseq1d 5427 . . . . . . . . 9 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) = ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵))
4018ad3antrrr 766 . . . . . . . . . . . . 13 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝐴 ⊆ (𝐶𝑚 𝐵))
41 simplr 807 . . . . . . . . . . . . 13 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧𝐴)
4240, 41sseldd 3637 . . . . . . . . . . . 12 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧 ∈ (𝐶𝑚 𝐵))
4342, 20syl 17 . . . . . . . . . . 11 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧 Fn 𝐵)
4422ad4antr 769 . . . . . . . . . . . 12 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝐼𝑉)
45 simp-4r 824 . . . . . . . . . . . 12 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑘𝐶)
4644, 45, 23syl2anc 694 . . . . . . . . . . 11 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
4728ad4antr 769 . . . . . . . . . . 11 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝐵 ∩ {𝐼}) = ∅)
4843, 46, 47, 31syl3anc 1366 . . . . . . . . . 10 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
4948, 41eqeltrd 2730 . . . . . . . . 9 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) ∈ 𝐴)
5039, 49eqeltrd 2730 . . . . . . . 8 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) ∈ 𝐴)
51 simpr 476 . . . . . . . . 9 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
5251, 13sylib 208 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑧𝐴 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
5350, 52r19.29a 3107 . . . . . . 7 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐵) ∈ 𝐴)
5453adantr 480 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → (𝑦𝐵) ∈ 𝐴)
5537, 54eqeltrd 2730 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → 𝑧𝐴)
5637uneq1d 3799 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → (𝑧 ∪ {⟨𝐼, 𝑘⟩}) = ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}))
5739, 48eqtrd 2685 . . . . . . . . . 10 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) = 𝑧)
5857uneq1d 3799 . . . . . . . . 9 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
5958, 38eqtr4d 2688 . . . . . . . 8 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = 𝑦)
6059, 52r19.29a 3107 . . . . . . 7 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = 𝑦)
6160adantr 480 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = 𝑦)
6256, 61eqtr2d 2686 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
6355, 62jca 553 . . . 4 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → (𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})))
6463anasss 680 . . 3 (((𝜑𝑘𝐶) ∧ (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵))) → (𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})))
6536, 64impbida 895 . 2 ((𝜑𝑘𝐶) → ((𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) ↔ (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵))))
664, 8, 11, 65f1od 6927 1 ((𝜑𝑘𝐶) → 𝐹:𝐴1-1-onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  Vcvv 3231  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  cop 4216  cmpt 4762  ran crn 5144  cres 5145   Fn wfn 5921  1-1-ontowf1o 5925  (class class class)co 6690  𝑚 cmap 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901
This theorem is referenced by:  breprexplema  30836
  Copyright terms: Public domain W3C validator